class MininetSimulator(object): def __init__(self, graph, controller_addr): self.graph = graph self.mininet_topo = Topo() self.controller_addr = controller_addr def generate_topo(self): nodes = self.graph["nodes"] edges = self.graph["edges"] for node in nodes: if node["class"] == "circleHClass": if (ip_re.match(node["title"])): self.mininet_topo.addHost(node, ip=node["title"]) else: self.mininet_topo.addHost(node) elif node["class"] == "circleSClass": self.mininet_topo.addSwitch(node) for edge in edges: # set link properties here. # bw(Mbps), delay, loss, max_queue_size # source code is in {mininet_root}/mininet/link.py linkopts = dict() self.mininet_topo.addLink(edge[0], edge[1], **linkopts) def run(self): self.generate_topo() net = Mininet(topo=self.mininet_topo, controller=RemoteController, link=TCLink, build=False, autoStaticArp=True) net.addController(ip=self.controller_addr) net.start() CLI(net) net.stop()
def finalize(self): # make mininet topo topo = Topo() # add nodes for x, d in self.nodes(data=True): if d['isSwitch']: topo.addSwitch(str(x)) else: topo.addHost(str(x)) # add links for src, dst in self.edges(): topo.addLink(str(src), str(dst)) # backpatch ports into original graph for x in self.nodes(): self.node[x]['ports'] = {} self.node[x]['port'] = {} for y in self.neighbors(x): x_port, y_port = topo.port(str(x), str(y)) self.node[x]['ports'][y] = x_port # Support indexing in by port to get neighbor switch/port self.node[x]['port'][x_port] = (y, y_port) self.topo = topo self.finalized = True
def finalize(self): # make mininet topo topo = Topo() # add nodes for x,d in self.nodes(data=True): if d['isSwitch']: topo.addSwitch(str(x)) else: topo.addHost(str(x)) # add links for src,dst in self.edges(): topo.addLink(str(src),str(dst)) # backpatch ports into original graph for x in self.nodes(): self.node[x]['ports'] = {} self.node[x]['port'] = {} for y in self.neighbors(x): x_port, y_port = topo.port(str(x),str(y)) self.node[x]['ports'][y] = x_port # Support indexing in by port to get neighbor switch/port self.node[x]['port'][x_port] = (y, y_port) self.topo = topo self.finalized = True
def createTopo(): topo=Topo() swCore1 = topo.addSwitch('s1') ## Ajuste do parametro de fanout da rede fanout = 2 # Switches counter lastSW = 2 lastHost = 1 # Aggregation switches loop for i in irange (1, fanout): swAggregL = topo.addSwitch('s%s' % lastSW) topo.addLink(swCore1, swAggregL) lastSW += 1 # Edge switches loop for j in irange (1, fanout): swEdge = topo.addSwitch('s%s' % lastSW) topo.addLink(swAggregL, swEdge) lastSW += 1 # Hosts loop for k in irange (1, fanout): host = topo.addHost('h%s' % lastHost) topo.addLink(swEdge, host) lastHost += 1 return topo
def createTopo(): topo=Topo() #Create Nodes topo.addHost("h1") topo.addHost("h2") topo.addHost("h3") topo.addHost("h4") topo.addHost("h5") topo.addHost("h6") topo.addSwitch('s1') topo.addSwitch('s2') topo.addSwitch('s3') topo.addHost("r1") #router topo.addHost("r2") #router topo.addHost("r3") #router #Create links topo.addLink('h1','s1') topo.addLink('h2','s1') topo.addLink('s1','r1') topo.addLink('h3','s2') topo.addLink('h4','s2') topo.addLink('s2','r2') topo.addLink('h5','s3') topo.addLink('h6','s3') topo.addLink('s3','r3') topo.addLink('r1','r2') topo.addLink('r1','r3') topo.addLink('r2','r3') return topo
def createTopo(): print "Create a topology." topo=Topo() print "Adding switches" NewYork = topo.addSwitch( 's1' ) Chicago = topo.addSwitch( 's2' ) WashingtonDC = topo.addSwitch( 's3' ) Seattle = topo.addSwitch( 's4' ) Sunnyvale = topo.addSwitch( 's5' ) LosAngeles = topo.addSwitch( 's6' ) Denver = topo.addSwitch( 's7' ) KansasCity = topo.addSwitch( 's8' ) Houston = topo.addSwitch( 's9' ) Atlanta = topo.addSwitch( 's10' ) Indianapolis = topo.addSwitch( 's11' ) print "Adding hosts" NewYork_host = topo.addHost( 'h1' ) Chicago_host = topo.addHost( 'h2' ) WashingtonDC_host = topo.addHost( 'h3' ) Seattle_host = topo.addHost( 'h4' ) Sunnyvale_host = topo.addHost( 'h5' ) LosAngeles_host = topo.addHost( 'h6' ) Denver_host = topo.addHost( 'h7' ) KansasCity_host = topo.addHost( 'h8' ) Houston_host = topo.addHost( 'h9' ) Atlanta_host = topo.addHost( 'h10' ) Indianapolis_host = topo.addHost( 'h11' ) print "Adding edges switch <-> host" topo.addLink( NewYork , NewYork_host ) topo.addLink( Chicago , Chicago_host ) topo.addLink( WashingtonDC , WashingtonDC_host ) topo.addLink( Seattle , Seattle_host ) topo.addLink( Sunnyvale , Sunnyvale_host ) topo.addLink( LosAngeles , LosAngeles_host ) topo.addLink( Denver , Denver_host ) topo.addLink( KansasCity , KansasCity_host ) topo.addLink( Houston , Houston_host ) topo.addLink( Atlanta , Atlanta_host ) topo.addLink( Indianapolis , Indianapolis_host ) print "Adding switches <-> switches" topo.addLink( NewYork , Chicago, bw=1000, delay='0.200ms') topo.addLink( NewYork , WashingtonDC, bw=1000, delay='0.200ms') topo.addLink( Chicago , Indianapolis, bw=1000, delay='0.200ms') topo.addLink( WashingtonDC , Atlanta, bw=1000, delay='0.200ms') topo.addLink( Seattle , Sunnyvale, bw=1000, delay='0.200ms') topo.addLink( Seattle , Denver, bw=1000, delay='0.200ms') topo.addLink( Sunnyvale , LosAngeles, bw=1000, delay='0.200ms') topo.addLink( Sunnyvale , Denver, bw=1000, delay='0.200ms') topo.addLink( LosAngeles , Houston, bw=1000, delay='0.200ms') topo.addLink( Denver , KansasCity, bw=1000, delay='0.200ms') topo.addLink( KansasCity , Houston, bw=1000, delay='0.200ms') topo.addLink( KansasCity , Indianapolis, bw=1000, delay='0.200ms') topo.addLink( Houston , Atlanta, bw=1000, delay='0.200ms') topo.addLink( Atlanta , Indianapolis, bw=1000, delay='0.200ms') return topo
def create_new_topology(topology_vector): # vector is constructed as: # there are n switches (s[0], ..., s[n-1]), where n is the length of topology_vector. # the ith switch s[i-1] is connected to topology_vector[i-1] end-hosts (h[i-1][0], ..., h[i-1][topology[i-1]-1]). newTopo = Topo() if topology_vector: # Verifies there are values in topology_vector before doing any work. for ind, switch in enumerate(topology_vector): if ind == 0: # Creates 1st switch of the network. newSwitch = 's' + str(ind) newTopo.addSwitch(newSwitch) i = 0 while i < int( switch ): # Creates hosts & links to switch per topology_vector value. newHost = 'h' + str(ind) + str(i) newTopo.addHost(newHost) newTopo.addLink(newSwitch, newHost) i += 1 else: newSwitch = 's' + str(ind) prevSwitch = 's' + str(ind - 1) newTopo.addSwitch(newSwitch) newTopo.addLink(newSwitch, prevSwitch) i = 0 while i < int(switch): newHost = 'h' + str(ind) + str(i) newTopo.addHost(newHost) newTopo.addLink(newSwitch, newHost) i += 1 return newTopo
def createTopo(): topo = Topo() swCore1 = topo.addSwitch('s1') ## Ajuste do parametro de fanout da rede fanout = 2 # Switches counter lastSW = 2 lastHost = 1 # Aggregation switches loop for i in irange(1, fanout): swAggregL = topo.addSwitch('s%s' % lastSW) topo.addLink(swCore1, swAggregL) lastSW += 1 # Edge switches loop for j in irange(1, fanout): swEdge = topo.addSwitch('s%s' % lastSW) topo.addLink(swAggregL, swEdge) lastSW += 1 # Hosts loop for k in irange(1, fanout): host = topo.addHost('h%s' % lastHost) topo.addLink(swEdge, host) lastHost += 1 return topo
def test_path_rules(self): topo = Topo() topo.addHost("h1", mac="00:00:00:00:00:01", ip="10.0.0.1/24") topo.addHost("h2", mac="00:00:00:00:00:02", ip="10.0.0.2/24") topo.addSwitch("s1") topo.addSwitch("s2") topo.addLink("h1", "s1", bw=10, port1=1, port2=3) topo.addLink("s1", "s2", bw=10, port1=2, port2=5) topo.addLink("s2", "h2", bw=20, port1=8, port2=10) expected_s1_paths = [{ 'src_ip': '10.0.0.1', 'src_mac': '00:00:00:00:00:01', 'dst_ip': '10.0.0.2', 'dst_mac': '00:00:00:00:00:02', 'out_port': '2' }, { 'src_ip': '10.0.0.2', 'src_mac': '00:00:00:00:00:02', 'dst_ip': '10.0.0.1', 'dst_mac': '00:00:00:00:00:01', 'out_port': '3' }] expected_s2_paths = [{ 'src_ip': '10.0.0.1', 'src_mac': '00:00:00:00:00:01', 'dst_ip': '10.0.0.2', 'dst_mac': '00:00:00:00:00:02', 'out_port': '8' }, { 'src_ip': '10.0.0.2', 'src_mac': '00:00:00:00:00:02', 'dst_ip': '10.0.0.1', 'dst_mac': '00:00:00:00:00:01', 'out_port': '5' }] net = Mininet(topo=topo, controller=None, build=True) result = GraphConverted.from_mininet(net=net) paths = result.path_rules(["h1", "s1", "s2", "h2"]) s1, s2 = paths["s1"], paths["s2"] net.stop() for i in s1: if i["src_ip"] == '10.0.0.1': if i['out_port'] != "2": self.assertTrue(False) if i["src_ip"] == '10.0.0.2': if i['out_port'] != "3": self.assertTrue(False) for i in s2: if i["src_ip"] == '10.0.0.1': if i['out_port'] != "8": self.assertTrue(False) if i["src_ip"] == '10.0.0.2': if i['out_port'] != "5": self.assertTrue(False) self.assertTrue(True)
def test_find_min_path(self): topo = Topo() topo.addHost("h1") topo.addHost("h2") topo.addSwitch("s1") topo.addLink("h1", "s1", bw=10) topo.addLink("h2", "s1", bw=20) net = Mininet(topo=topo, controller=None, build=True) result = GraphConverted.from_mininet(net=net) net.stop() expected = ['h1', 's1', 'h2'] self.assertEqual(expected, result.find_min_path("h1", "h2"))
def test_from_mininet_topo_1(self): topo = Topo() topo.addHost("h1") topo.addHost("h2") topo.addSwitch("s1") topo.addLink("h1", "s1") topo.addLink("h2", "s1") net = Mininet(topo=topo, controller=None, build=True) result = GraphConverted.from_mininet(net=net) result = result.getNetwork() g_edges = result.edges.data() net.stop() self.assertEqual(2, len(g_edges))
def processTopo(topoFile): config = configparser.ConfigParser(delimiters=' ', allow_no_value=True) config.read(topoFile) topo = Topo() items = config.items('nodes') coordinates = [] for item in items: name = item[0].split(':')[0] params = {} if item[1]: if all (x in item[1] for x in ['radius', 'angle']) and item[1] in coordinates: error("FATAL: Duplicate Coordinate, \'{}\' used by multiple nodes\n" \ .format(item[1])) sys.exit(1) coordinates.append(item[1]) for param in item[1].split(' '): if param == '_': continue params[param.split('=')[0]] = param.split('=')[1] topo.addHost(name, params=params) try: items = config.items('switches') for item in items: name = item[0].split(':')[0] topo.addSwitch(name) except configparser.NoSectionError: # Switches are optional pass items = config.items('links') for item in items: link = item[0].split(':') params = {} for param in item[1].split(' '): key = param.split('=')[0] value = param.split('=')[1] if key in ['bw', 'jitter', 'max_queue_size']: value = int(value) if key == 'loss': value = float(value) params[key] = value topo.addLink(link[0], link[1], **params) return topo
def createNet(args): topo=Topo() h1 = topo.addHost("h1",ip='10.0.1.1/24') s1 = topo.addSwitch("s1") pep = topo.addHost("pep",ip='10.0.1.90/24') s2 = topo.addSwitch("s2") h2 = topo.addHost("h2",ip='10.0.2.1/24') topo.addLink(h1,s1,cls=TCLink, bw=args.bw, delay= str((args.rttTotal-args.rttSat)/4)+"ms",loss=0) topo.addLink(s1,pep,cls=TCLink, bw=args.bw, delay= str((args.rttTotal-args.rttSat)/4)+"ms",loss=0) topo.addLink(pep,s2,cls=TCLink, bw=args.bw, delay= str(args.rttSat/4)+"ms",loss=0) topo.addLink(s2,h2,cls=TCLink, bw=args.bw, delay= str(args.rttSat/4)+"ms",loss=args.loss) return Mininet(topo)
def hello_world(): topo = Topo() topo.addHost("h1", cls=Docker, ip="10.0.0.251", dimage="ubuntu:trusty") topo.addHost("h2", cls=Docker, ip="10.0.0.252", dimage="ubuntu:trusty") topo.addSwitch("s1", dpid=Tools.makeDPID(1)) topo.addLink("h1", "s1") topo.addLink("h2", "s1") # start cluster cluster = maxinet.Cluster(minWorkers=1, maxWorkers=2) # start experiment with OVSSwitch on cluster exp = maxinet.Experiment(cluster, topo, switch=OVSSwitch) exp.setup() return 'Welcome to our Library!'
def test_update_path_weights(self): topo = Topo() topo.addHost("h1") topo.addHost("h2") topo.addSwitch("s1") topo.addLink("h1", "s1", bw=10) topo.addLink("h2", "s1", bw=20) net = Mininet(topo=topo, controller=None, build=True) result = GraphConverted.from_mininet(net=net) result.update_path_weights(["h1", "s1", "h2"], weight=5) result = result.getSupport() g_edges = result.edges.data('weight', default=1) sum_weigths = sum([edge[2] for edge in g_edges]) net.stop() self.assertEqual(12, sum_weigths)
def test_from_mininet_topo(self): topo = Topo() topo.addHost("h1") topo.addHost("h2") topo.addSwitch("s1") topo.addLink("h1", "s1", bw=10) topo.addLink("h2", "s1", bw=20) net = Mininet(topo=topo, controller=None, build=True) weigths = sorted([0, 0]) result = GraphConverted.from_mininet(net=net) result = result.getTotalBwNetwork() g_edges = result.edges.data('weight', default=1) g_weigths = sorted([edge[2] for edge in g_edges]) net.stop() self.assertEqual(weigths, g_weigths)
class MininetTopology(object): def __init__(self, topology): self.topology = topology self.mininet_topology = Topo() self.add_hosts() self.add_switches() self.add_links() self.mininet = Mininet(topo=self.mininet_topology, switch=partial(OVSSwitch, datapath='user'), controller=None) self.add_controllers() self.add_interfaces() def add_hosts(self): for host in self.topology.hosts: mac = None if 'mac' not in host else host['mac'] self.mininet_topology.addHost(host['name'], ip=host['ip'], defaultRoute='via ' + host['gw'], mac=mac) def add_switches(self): for switch in self.topology.switches: if 'type' not in switch or switch['type'] == 'ovs': self.mininet_topology.addSwitch(switch['name'], dpid=switch['dpid'], protocols=switch['protocol']) def add_links(self): for link in self.topology.links: if link['source'] in self.mininet_topology.nodes() \ and link['destination'] in self.mininet_topology.nodes(): self.mininet_topology.addLink(link['source'], link['destination']) def add_controllers(self): for controller in self.topology.controllers: self.mininet.addController(RemoteController(controller['name'], ip=controller['ip'])) def add_interfaces(self): for interface in self.topology.interfaces: Intf(interface['name'], node=self.mininet.nameToNode[interface['switch']]) def start(self): self.mininet.start() def cli(self): CLI(self.mininet) def stop(self): self.mininet.stop() cleanup()
def test_mininet_conversion_to_logical(): """Test the conversion from a mininet logical network to a logical one.""" import networkx as nx from distriopt import VirtualNetwork from mininet.topo import Topo virt_topo_mn = Topo() # Add nodes u = virt_topo_mn.addHost("u", cores=2, memory=1000) v = virt_topo_mn.addHost("v", cores=2, memory=1000) z = virt_topo_mn.addSwitch("z", cores=2, memory=1000) # Add links virt_topo_mn.addLink(u, v, rate=1000) virt_topo_mn.addLink(v, z, rate=1000) virt_topo_mn.addLink(u, z, rate=1000) virtual_topo = VirtualNetwork.from_mininet(virt_topo_mn) assert virtual_topo.number_of_nodes() == 3 assert len(virtual_topo.edges()) == 3 assert nx.is_connected(virtual_topo.g) for node in virtual_topo.nodes(): assert virtual_topo.req_cores(node) == 2 assert virtual_topo.req_memory(node) == 1000 for i, j in virtual_topo.edges(): assert virtual_topo.req_rate(i, j) == 1000
def test_mininet_conversion_to_physical(): """Test the conversion from a mininet physical network to a PhysicalNetwork one.""" import networkx as nx from distriopt.embedding import PhysicalNetwork from mininet.topo import Topo phy_topo_mn = Topo() # Add nodes master1 = phy_topo_mn.addHost("Master1", cores=2, memory=1000) node1 = phy_topo_mn.addHost("Node1", cores=2, memory=1000) sw = phy_topo_mn.addSwitch("SW") # Add links phy_topo_mn.addLink(master1, sw, port1="eth0", port2="eth0", rate=1000) phy_topo_mn.addLink(master1, sw, port1="eth1", port2="eth2", rate=1000) phy_topo_mn.addLink(node1, sw, port1="eth0", port2="eth1", rate=1000) phy_topo = PhysicalNetwork.from_mininet(phy_topo_mn) assert len(phy_topo.compute_nodes) == 2 assert phy_topo.number_of_nodes() == 3 assert len(phy_topo.edges()) == 3 assert nx.is_connected(phy_topo.g) for node in phy_topo.compute_nodes: assert phy_topo.cores(node) == 2 assert phy_topo.memory(node) == 1000 for i, j, device in phy_topo.edges(keys=True): assert phy_topo.rate(i, j, device) == 1000
def test_from_mininet(self): from mininet.topo import Topo t = Topo() t.addHost("h1") t.addHost("h4") t.addSwitch("s2") t.addSwitch("s3") t.addLink("h1", "s2") t.addLink("s2", "s3") t.addLink("s3", "h4") fnss_topo = fnss.from_mininet(t) self.assertIsNotNone(fnss_topo) for h in "h1", "h4": self.assertEqual(fnss_topo.node[h]['type'], 'host') for s in "s2", "s3": self.assertEqual(fnss_topo.node[s]['type'], 'switch')
def main(): logger = MininetLogger() logger.setLogLevel(levelname='info') controller_ip = sys.argv[2] topo = Topo() n = int(sys.argv[1]) switches = [topo.addSwitch('s%d' % (i+1), protocols='OpenFlow13') for i in range(n)] host1 = topo.addHost('h%d' % 1, mac="12:34:56:78:00:01") host2 = topo.addHost('h%d' % 2, mac="12:34:56:78:00:02") hosts = [host1, host2] for i in [0, 1]: topo.addLink(hosts[i], switches[i]) for i in range(n): topo.addLink(switches[i], switches[(i+1) % n]) net = Mininet(topo=topo, controller=RemoteController, link=TCLink, build=False) net.addController(ip=controller_ip) net.start() CLI(net) net.stop()
def test_getports(self): topo = Topo() topo.addHost("h1") topo.addHost("h2") topo.addSwitch("s1") topo.addLink("h1", "s1", port1=20, port2=30) topo.addLink("h2", "s1", port1=10, port2=40) net = Mininet(topo=topo, controller=None, build=True) expected = { ('h1', 's1'): ('20', '30'), ('s1', 'h1'): ('30', '20'), ('h2', 's1'): ('10', '40'), ('s1', 'h2'): ('40', '10') } result = sorted(GraphConverted.getNetworkPorts(net=net).items()) net.stop() self.assertEqual(sorted(expected.items()), result)
def test_update_path_weights_1(self): topo = Topo() topo.addHost("h1") topo.addHost("h2") topo.addSwitch("s1") topo.addLink("h1", "s1", bw=10) topo.addLink("h2", "s1", bw=20) net = Mininet(topo=topo, controller=None, build=True) result = GraphConverted.from_mininet(net=net) try: result.update_path_weights(["h1"], weight=5) except ValueError: net.stop() self.assertTrue(True) else: net.stop() self.assertTrue(False)
def createTopo(): topo = Topo() #Create Nodes topo.addHost("h1") topo.addHost("h2") topo.addHost("h3") topo.addHost("h4") topo.addSwitch('s1') topo.addSwitch('s2') topo.addSwitch('s3') #Create links topo.addLink('s1', 's2') topo.addLink('s1', 's3') topo.addLink('h1', 's2') topo.addLink('h2', 's2') topo.addLink('h3', 's3') topo.addLink('h4', 's3') return topo
def createTopo(): topo = Topo() #Create Nodes topo.addHost("h1") topo.addHost("h2") topo.addHost("h3") topo.addHost("h4") topo.addSwitch('s1') topo.addSwitch('s2') topo.addSwitch('s3') #Create links topo.addLink('s1', 's2', bw=100, delay='100ms', loss=10) topo.addLink('s1', 's3') topo.addLink('h1', 's2') topo.addLink('h2', 's2') topo.addLink('h3', 's3') topo.addLink('h4', 's3') return topo
def processTopo(topoFile): config = configparser.ConfigParser(delimiters=' ') config.read(topoFile) topo = Topo() items = config.items('nodes') for item in items: name = item[0].split(':')[0] params = {} for param in item[1].split(' '): if param == '_': continue params[param.split('=')[0]] = param.split('=')[1] topo.addHost(name, params=params) try: items = config.items('switches') for item in items: name = item[0].split(':')[0] topo.addSwitch(name) except configparser.NoSectionError: # Switches are optional pass items = config.items('links') for item in items: link = item[0].split(':') params = {} for param in item[1].split(' '): key = param.split('=')[0] value = param.split('=')[1] if key in ['bw', 'jitter', 'max_queue_size']: value = int(value) if key == 'loss': value = float(value) params[key] = value topo.addLink(link[0], link[1], **params) return topo
def createNet(args): topo = Topo() h1 = topo.addHost("h1", ip='10.0.1.1/24') s1 = topo.addSwitch("s1") h2 = topo.addHost("h2", ip='10.0.1.2/24') topo.addLink(h1, s1, cls=TCLink, bw=10, delay="10ms", loss=1) topo.addLink(s1, h2, cls=TCLink, bw=10, delay="10ms", loss=1) return Mininet(topo)
def test_from_mininet(self): try: from mininet.topo import Topo except ImportError: raise ImportError('You must have Mininet installed to run this test case') t = Topo() t.addHost("h1") t.addHost("h4") t.addSwitch("s2") t.addSwitch("s3") t.addLink("h1", "s2") t.addLink("s2", "s3") t.addLink("s3", "h4") fnss_topo = fnss.from_mininet(t) self.assertIsNotNone(fnss_topo) for h in "h1", "h4": self.assertEqual(fnss_topo.node[h]['type'], 'host') for s in "s2", "s3": self.assertEqual(fnss_topo.node[s]['type'], 'switch')
def createTopo(): topo=Topo() #Create Nodes topo.addHost("h1") topo.addHost("h2") topo.addHost("h3") topo.addHost("h4") topo.addSwitch('s1') topo.addSwitch('s2') topo.addSwitch('s3') #Create links topo.addLink('s1','s2',bw=100,delay='100ms',loss=10) topo.addLink('s1','s3') topo.addLink('h1','s2') topo.addLink('h2','s2') topo.addLink('h3','s3') topo.addLink('h4','s3') return topo
def createTopo(): topo=Topo() #Create Nodes topo.addHost("h1") topo.addHost("h2") topo.addHost("h3") topo.addHost("h4") topo.addSwitch('s1') topo.addSwitch('s2') topo.addSwitch('s3') #Create links topo.addLink('s1','s2') topo.addLink('s1','s3') topo.addLink('h1','s2') topo.addLink('h2','s2') topo.addLink('h3','s3') topo.addLink('h4','h3') return topo
def test_from_mininet(self): try: from mininet.topo import Topo except ImportError: raise ImportError( 'You must have Mininet installed to run this test case') t = Topo() t.addHost("h1") t.addHost("h4") t.addSwitch("s2") t.addSwitch("s3") t.addLink("h1", "s2") t.addLink("s2", "s3") t.addLink("s3", "h4") fnss_topo = fnss.from_mininet(t) self.assertIsNotNone(fnss_topo) for h in "h1", "h4": self.assertEqual(fnss_topo.node[h]['type'], 'host') for s in "s2", "s3": self.assertEqual(fnss_topo.node[s]['type'], 'switch')
def createHost(Topo, host_name, host_ip, gw, m_router, m_interface, host_number): s = Topo.addSwitch('s' + str(host_number)) Topo.addLink(s, m_router, intfName2=m_interface, params2={'ip': host_ip + '/24'}, cls=TCLink) h = Topo.addHost(name=host_name, ip=host_ip, defaultRoute=gw) Topo.addLink(h, s, cls=TCLink) #net[r].cmd("ifconfigs"+str(host_number)+"-router "+host_ip+"/24") return h
def createTopo(): topo = Topo() #Create Host Nodes for x in range(1, 9): print "h" + str(x) topo.addHost("h" + str(x)) #Create Switch Nodes topo.addSwitch("c1") topo.addSwitch("d1") topo.addSwitch("d2") for x in range(1, 5): print "a" + str(x) topo.addSwitch("a" + str(x)) #Create links topo.addLink("c1", "d1", bw=1000, delay='2ms') topo.addLink("c1", "d2", bw=1000, delay='2ms') for x in range(1, 3): topo.addLink("d" + str(x), "a" + str(2 * x - 1), bw=100, delay='2ms') topo.addLink("d" + str(x), "a" + str(2 * x), bw=100, delay='2ms') for x in range(1, 5): topo.addLink("a" + str(x), "h" + str(2 * x - 1), bw=10, delay='2ms') topo.addLink("a" + str(x), "h" + str(2 * x), bw=10, delay='2ms') return topo
def createTopo(): topo = Topo() #Create Nodes topo.addHost("h1") topo.addHost("h2") topo.addHost("h3") topo.addHost("h4") topo.addHost("h5") topo.addHost("h6") topo.addHost("h7") topo.addHost("h8") topo.addSwitch('d1') topo.addSwitch('d2') topo.addSwitch('a1') topo.addSwitch('a2') topo.addSwitch('a3') topo.addSwitch('a4') #Create links topo.addLink('d1', 'd2', bw=10000, delay='1ms') topo.addLink('d1', 'a1', bw=1000, delay='3ms') topo.addLink('d1', 'a2', bw=1000, delay='3ms') topo.addLink('d2', 'a3', bw=1000, delay='3ms') topo.addLink('d2', 'a4', bw=1000, delay='3ms') topo.addLink('a1', 'h1', bw=100, delay='5ms') topo.addLink('a1', 'h2', bw=100, delay='5ms') topo.addLink('a2', 'h3', bw=100, delay='5ms') topo.addLink('a2', 'h4', bw=100, delay='5ms') topo.addLink('a3', 'h5', bw=100, delay='5ms') topo.addLink('a3', 'h6', bw=100, delay='5ms') topo.addLink('a4', 'h7', bw=100, delay='5ms') topo.addLink('a4', 'h8', bw=100, delay='5ms', loss=15) return topo
def create_topo(topo): t = Topo() i = 1 for host in topo['hosts']: logger.debug("add host {} to topo".format(host['name'])) t.addHost(host['name'], ip=Tools.makeIP(i), mac=Tools.makeMAC(i)) i += 1 i = 1 for switch in topo['switches']: logger.debug("add switch {} to topo".format(switch['name'])) t.addSwitch(switch['name'], dpid=Tools.makeDPID(i)) i += 1 i = 1 for link in topo['links']: logger.debug("add link from {} to {} to topo".format( link['node1']['name'], link['node2']['name'])) t.addLink(link['node1']['name'], link['node2']['name']) i += 1 return t
def createNet(args): topo = Topo() h1 = topo.addHost('h1', ip='10.0.1.1/24') pep1 = topo.addHost('pep1', ip='10.0.1.90/24') sat = topo.addHost('sat', ip='10.0.3.90/24') pep2 = topo.addHost('pep2', ip='10.0.4.1/24') h2 = topo.addHost('h2', ip='10.0.2.1/24') s1 = topo.addSwitch('s1') s2 = topo.addSwitch('s2') s3 = topo.addSwitch('s3') s4 = topo.addSwitch('s4') topo.addLink(h1, s1) topo.addLink(s1, pep1) topo.addLink(pep1, s3) topo.addLink(s3, sat) topo.addLink(sat, s4) topo.addLink(s4, pep2) topo.addLink(pep2, s2) topo.addLink(s2, h2) return Mininet(topo)
def networkx_to_mininet(G, hosts, switches, mapping): # Conversion from NetworkX topology into FNSS topology fnss_topo = fnss.Topology(G) # G is a NetworkX Graph() and fnss_topo is a FNSS Topology(): hosts and switches are indistinguishable. # We exploit 'mapping' returned from parse_network_xml() for nodes role differentiation. # We can't use fnss.adapters.to_mininet() because we need a customized nodes relabeling. # TODO link capacities!! http://fnss.github.io/doc/core/_modules/fnss/adapters/mn.html # Conversion from FNSS topology into Mininet topology nodes = set(fnss_topo.nodes_iter()) hosts = sorted(set(hosts)) switches = sorted(set(switches)) hosts = set(mapping[v] for v in hosts) switches = set(mapping[v] for v in switches) if not switches.isdisjoint(hosts): raise ValueError('Some nodes are labeled as both host and switch. ' 'Switches and hosts node lists must be disjoint') if hosts.union(switches) != switches.union(hosts): raise ValueError('Some nodes are not labeled as either host or switch ' 'or some nodes listed as switches or hosts do not ' 'belong to the topology') fnss_topo = nx.relabel_nodes(fnss_topo, mapping, copy=True) global mn_topo mn_topo = Topo() for v in switches: mn_topo.addSwitch(str(v)) for v in hosts: mn_topo.addHost(str(v)) for u, v in fnss_topo.edges_iter(): params = {} mn_topo.addLink(str(u), str(v), **params) return mn_topo
def createTopo(): topo = Topo() # Create switches for switch in ACCESS_SWITCHES + DISTRIBUTION_SWICHES + [CORE_SwITCH]: topo.addSwitch(switch) # Create hosts for host in HOSTS: topo.addHost(host) # Create core to distribution links for idx, distribution in enumerate(DISTRIBUTION_SWICHES): topo.addLink(distribution, CORE_SwITCH, bw=CORE_BW, delay=CORE_DELAY) # Create distribution to access links for idx, access in enumerate(ACCESS_SWITCHES): topo.addLink( access, DISTRIBUTION_SWICHES[idx / 2], bw=DISTRIBUTION_BW, delay=DISTRIBUTION_DELAY, ) # Create access to host links for idx, host in enumerate(HOSTS): loss = BAD_LINK_LOSS if host in BAD_LINK_HOSTS else 0 topo.addLink( host, ACCESS_SWITCHES[idx / 2], bw=ACCESS_BW, delay=ACCESS_DELAY, loss=loss, ) return topo
class MininetSimulator(object): def __init__(self, graph, controller_addr): self.graph = graph self.mininet_topo = Topo(); self.controller_addr = controller_addr def generate_topo(self): nodes = self.graph["nodes"] edges = self.graph["edges"] for node in nodes: if node["class"] == "circleHClass": if (ip_re.match(node["title"])): self.mininet_topo.addHost(node, ip=node["title"]) else: self.mininet_topo.addHost(node) elif node["class"] == "circleSClass": self.mininet_topo.addSwitch(node) for edge in edges: # set link properties here. # bw(Mbps), delay, loss, max_queue_size # source code is in {mininet_root}/mininet/link.py linkopts = dict() self.mininet_topo.addLink(edge[0], edge[1], **linkopts) def run(self): self.generate_topo() net = Mininet(topo=self.mininet_topo, controller=RemoteController, link=TCLink, build=False, autoStaticArp=True) net.addController(ip=self.controller_addr) net.start() CLI(net) net.stop()
def createTopology(switch, hosts): setLogLevel('info') topo = Topo() switch = topo.addSwitch(switch) for (hostname, opts) in hosts: host = topo.addHost(hostname, **opts) topo.addLink(host, switch, None) network = Mininet(topo, controller=None) network.start() print "*** Dumping host connections" dumpNodeConnections(network.hosts) CLI(network) network.stop()
def createTopology(switch, hosts): ODL_Controller_IP='172.17.40.4' setLogLevel('info') topo = Topo() switch = topo.addSwitch(switch) for (hostname, opts) in hosts: host = topo.addHost(hostname, **opts) topo.addLink(host, switch, None) network = Mininet(topo, controller=None) #odl_ctrl = network.addController('c0', controller=RemoteController, ip=ODL_Controller_IP, port=6633) network.start() print "*** Dumping host connections" dumpNodeConnections(network.hosts) CLI(network) network.stop()
def createTopo(): print "Create a topology." topo=Topo() print "Adding switch" masterSwitch = topo.addSwitch( 's1' ) print "Adding servers" server1 = topo.addHost( 'server1' ) server2 = topo.addHost( 'server2' ) print "Adding hosts" host1 = topo.addHost( 'h1' ) host2 = topo.addHost( 'h2' ) host3 = topo.addHost( 'h3' ) host4 = topo.addHost( 'h4' ) host5 = topo.addHost( 'h5' ) host6 = topo.addHost( 'h6' ) host7 = topo.addHost( 'h7' ) host8 = topo.addHost( 'h8' ) host9 = topo.addHost( 'h9' ) host10 = topo.addHost( 'h10' ) print "Adding links" topo.addLink( host1 , masterSwitch, bw=1, delay='0.200ms') topo.addLink( host2 , masterSwitch, bw=1, delay='0.200ms') topo.addLink( host3 , masterSwitch, bw=1, delay='0.200ms') topo.addLink( host4 , masterSwitch, bw=1, delay='0.200ms') topo.addLink( host5 , masterSwitch, bw=1, delay='0.200ms') topo.addLink( host6 , masterSwitch, bw=1, delay='0.200ms') topo.addLink( host7 , masterSwitch, bw=1, delay='0.200ms') topo.addLink( host8 , masterSwitch, bw=1, delay='0.200ms') topo.addLink( host9 , masterSwitch, bw=1, delay='0.200ms') topo.addLink( host10 , masterSwitch, bw=1, delay='0.200ms') topo.addLink( server1 , masterSwitch, bw=10, delay='0.200ms') topo.addLink( server2 , masterSwitch, bw=10, delay='0.200ms') return topo
# import sys sys.path.append("..") # needed to import maxinet.py from parent-folder import maxinet import time from mininet.topo import Topo from maxinet import Tools from mininet.node import OVSSwitch # create topology topo = Topo() topo.addHost("h1",ip=Tools.makeIP(1), mac=Tools.makeMAC(1)) topo.addHost("h2",ip=Tools.makeIP(2), mac=Tools.makeMAC(2)) topo.addSwitch("s1",dpid=Tools.makeDPID(1)) topo.addLink("h1","s1") topo.addLink("h2","s1") # start cluster cluster = maxinet.Cluster() cluster.start() # start experiment with OVSSwitch on cluster exp = maxinet.Experiment(cluster, topo,switch=OVSSwitch) exp.setup() print "waiting 5 seconds for routing algorithms on the controller to converge" time.sleep(5)
def to_mininet(topology, switches=None, hosts=None, relabel_nodes=True): """Convert an FNSS topology to Mininet Topo object that can be used to deploy a Mininet network. If the links of the topology are labeled with delays, capacities or buffer sizes, the returned Mininet topology will also include those parameters. However, it should be noticed that buffer sizes are included in the converted topology only if they are expressed in packets. If buffer sizes are expressed in the form of bytes they will be discarded. This is because Mininet only supports buffer sizes expressed in packets. Parameters ---------- topology : Topology, DirectedTopology or DatacenterTopology An FNSS Topology object switches : list, optional List of topology nodes acting as switches hosts : list, optional List of topology nodes acting as hosts relabel_nodes : bool, optional If *True*, rename node labels according to `Mininet conventions <https://github.com/mininet/mininet/wiki/Introduction-to-Mininet#naming-in-mininet>`_. In Mininet all node labels are strings whose values are "h1", "h2", ... if the node is a host or "s1", "s2", ... if the node is a switch. Returns ------- topology : Mininet Topo A Mininet topology object Notes ----- It is not necessary to provide a list of switch and host nodes if the topology object provided are already annotated with a type attribute that can have values *host* or *switch*. This is the case of datacenter topologies generated with FNSS which already include information about which nodes are hosts and which are switches. If switches and hosts are passed as arguments, then the hosts and switches sets must be disjoint and their union must coincide to the set of all topology nodes. In other words, there cannot be nodes labeled as both *host* and *switch* and there cannot be nodes that are neither a *host* nor a *switch*. It is important to point out that if the topology contains loops, it will not work with the *ovs-controller* and *controller* provided by Mininet. It will be necessary to use custom controllers. Further info `here <https://github.com/mininet/mininet/wiki/Introduction-to-Mininet#multipath-routing>`_. """ try: from mininet.topo import Topo except ImportError: raise ImportError('Cannot import mininet.topo package. ' 'Make sure Mininet is installed on this machine.') if hosts is None: hosts = (v for v in topology.nodes_iter() if 'host' in topology.node[v]['type']) if switches is None: switches = (v for v in topology.nodes_iter() if 'switch' in topology.node[v]['type']) nodes = set(topology.nodes_iter()) switches = set(switches) hosts = set(hosts) if not switches.isdisjoint(hosts): raise ValueError('Some nodes are labeled as both host and switch. ' 'Switches and hosts node lists must be disjoint') if nodes != switches.union(hosts): raise ValueError('Some nodes are not labeled as either host or switch ' 'or some nodes listed as switches or hosts do not ' 'belong to the topology') if relabel_nodes: hosts = sorted(hosts) switches = sorted(switches) mapping = dict([(hosts[i], "h%s" % str(i+1)) for i in range(len(hosts))] + [(switches[i], "s%s" % str(i+1)) for i in range(len(switches))]) hosts = set(mapping[v] for v in hosts) switches = set(mapping[v] for v in switches) nodes = hosts.union(switches) topology = nx.relabel_nodes(topology, mapping, copy=True) topo = Topo() for v in switches: topo.addSwitch(str(v)) for v in hosts: topo.addHost(str(v)) delay_unit = topology.graph['delay_unit'] \ if 'delay_unit' in topology.graph else None capacity_unit = topology.graph['capacity_unit'] \ if 'capacity_unit' in topology.graph else None buffer_unit = topology.graph['buffer_unit'] \ if 'buffer_unit' in topology.graph else None if capacity_unit: capacity_conversion = float(capacity_units[capacity_unit]) \ / capacity_units['Mbps'] if delay_unit: delay_conversion = float(time_units[delay_unit]) \ / time_units['us'] for u, v in topology.edges_iter(): params = {} if 'capacity' in topology.edge[u][v] and capacity_unit: params['bw'] = topology.edge[u][v]['capacity'] * capacity_conversion # Use Token Bucket filter to implement rate limit params['use_htb'] = True if 'delay' in topology.edge[u][v] and delay_unit: params['delay'] = '%sus' % str(topology.edge[u][v]['delay'] * delay_conversion) if 'buffer_size' in topology.edge[u][v] and buffer_unit == 'packets': params['max_queue_size'] = topology.edge[u][v]['buffer_size'] topo.addLink(str(u), str(v), **params) return topo
# Start sshd on the emulated hosts and create a specialized host # emulated at the Frontend which tunnels ssh from the Frontend to the # emulated hosts. # import subprocess from mininet.node import OVSSwitch from mininet.topo import Topo from MaxiNet.Frontend import maxinet from MaxiNet.tools import Tools topo = Topo() topo.addSwitch("s1") topo.addSwitch("s2") topo.addHost("h1", ip=Tools.makeIP(1), mac=Tools.makeMAC(1)) topo.addHost("h2", ip=Tools.makeIP(2), mac=Tools.makeMAC(2)) topo.addLink("h1", "s1") topo.addLink("s1", "s2") topo.addLink("h2", "s2") cluster = maxinet.Cluster() # we need to add the root node after the simulation has started as we do # not know which worker id the frontend machine will get. Therefore we # need a dynamic topology which is only supported in openvswitch exp = maxinet.Experiment(cluster, topo, switch=OVSSwitch) exp.setup()
def to_mininet(topology, switches=None, hosts=None): """Convert an FNSS topology to Mininet Topo object that can be used to deploy a Mininet network. If the links of the topology are labeled with delays, capacities or buffer sizes, the returned Mininet topology will also include those parameters. However, it should be noticed that buffer sizes are included in the converted topology only if they are expressed in packets. If buffer sizes are expressed in the form of bytes they will be discarded. This is because Mininet only supports buffer sizes expressed in packets. Parameters ---------- topology : Topology, DirectedTopology or DatacenterTopology An FNSS Topology object switches : list, optional List of topology nodes acting as switches hosts : list, optional List of topology nodes acting as hosts Returns ------- topology : Mininet Topo A Mininet topology object Notes ----- It is not necessary to provide a list of switch and host nodes if the topology object provided are already annotated with a type attribute that can have values *host* or *switch*. This is the case of datacenter topologies generated with FNSS which already include information about which nodes are hosts and which are switches. If switches and hosts are passed as arguments, then the hosts and switches sets must be disjoint and their union must coincide to the set of all topology nodes. In other words, there cannot be nodes labeled as both *host* and *switch* and there cannot be nodes that are neither a *host* nor a *switch*. """ try: from mininet.topo import Topo except ImportError: raise ImportError('Cannot import mininet.topo package. ' 'Make sure Mininet is installed on this machine.') if hosts is None: hosts = (v for v in topology.nodes_iter() if 'host' in topology.node[v]['type']) if switches is None: switches = (v for v in topology.nodes_iter() if 'switch' in topology.node[v]['type']) nodes = set(topology.nodes_iter()) switches = set(switches) hosts = set(hosts) if not switches.isdisjoint(hosts): raise ValueError('Some nodes are labeled as both host and switch. ' 'Switches and hosts node lists must be disjoint') if not nodes == switches.union(hosts): raise ValueError('Some nodes are not labeled as either host or switch ' 'or some nodes listed as switches or hosts do not ' 'belong to the topology') topo = Topo() for v in switches: topo.addSwitch(str(v)) for v in hosts: topo.addHost(str(v)) delay_unit = topology.graph['delay_unit'] \ if 'delay_unit' in topology.graph else None capacity_unit = topology.graph['capacity_unit'] \ if 'capacity_unit' in topology.graph else None buffer_unit = topology.graph['buffer_unit'] \ if 'buffer_unit' in topology.graph else None if capacity_unit is not None: capacity_conversion = float(capacity_units[capacity_unit]) \ / capacity_units['Mbps'] if delay_unit is not None: delay_conversion = float(time_units[delay_unit]) \ / time_units['us'] for u, v in topology.edges_iter(): params = {} if 'capacity' in topology.edge[u][v] and capacity_unit is not None: params['bw'] = topology.edge[u][v]['capacity'] * capacity_conversion # Use Token Bucket filter to implement rate limit params['use_htb'] = True if 'delay' in topology.edge[u][v] and delay_unit is not None: params['delay'] = '%sus' % str(topology.edge[u][v]['delay'] * delay_conversion) if 'buffer_size' in topology.edge[u][v] and buffer_unit == 'packets': params['max_queue_size'] = topology.edge[u][v]['buffer_size'] topo.addLink(str(u), str(v), **params) return topo
""" A small example showing the usage of Docker containers. """ import time from MaxiNet.Frontend import maxinet from MaxiNet.Frontend.container import Docker from mininet.topo import Topo from mininet.node import OVSSwitch topo = Topo() d1 = topo.addHost("d1", cls=Docker, ip="10.0.0.251", dimage="ubuntu:trusty") d2 = topo.addHost("d2", cls=Docker, ip="10.0.0.252", dimage="ubuntu:trusty") s1 = topo.addSwitch("s1") s2 = topo.addSwitch("s2") topo.addLink(d1, s1) topo.addLink(s1, s2) topo.addLink(d2, s2) cluster = maxinet.Cluster() exp = maxinet.Experiment(cluster, topo, switch=OVSSwitch) exp.setup() print exp.get_node("d1").cmd("ifconfig") print exp.get_node("d2").cmd("ifconfig") print "waiting 5 seconds for routing algorithms on the controller to converge" time.sleep(5)
def create_topology(context): topo = Topo() h = '' sfs_per_sff = int(context.sf_number) / int(context.switch_number) # Add the links SFFs - SFs for i in range(len(context.sf_forwarders)): print context.sf_forwarders[i].opts s = topo.addSwitch( context.sf_forwarders[i].name, opts=context.sf_forwarders[i].opts) for j in range(sfs_per_sff): sf_index = (i*int(sfs_per_sff))+j if not context.service_functions[sf_index]: # Add the Loop switches instead of normal hosts sf_loopback_name = '%s-node%d' % ( context.sf_forwarders[i].name, j + 1) context.sf_loopbacks.append(sf_loopback_name) h = topo.addSwitch(sf_loopback_name, opts='') else: # Add the SFs as normal hosts if context.service_functions[sf_index].vlan_id_ == 0: h = topo.addHost( context.service_functions[sf_index].name, ip=context.service_functions[sf_index].ip_, mac=context.service_functions[sf_index].mac_) else: h = topo.addHost( context.service_functions[sf_index].name, cls=VlanHost, vlan=context.service_functions[sf_index].vlan_id_, ip=context.service_functions[sf_index].ip_, mac=context.service_functions[sf_index].mac_) # Connect the SF to the SFF topo.addLink(node1=h, node2=s) # Add the GWs gw1 = topo.addSwitch( context.gateways[0].name, opts=context.gateways[0].opts) gw2 = topo.addSwitch( context.gateways[1].name, opts=context.gateways[1].opts) if context.topology_tor: # Create the Top-of-Rack switch topo.addSwitch(context.tor_info.name, opts=context.tor_info.opts) # Connect each SFF to the ToR switch for i in range(len(context.sf_forwarders)): topo.addLink(context.tor_info.name, context.sf_forwarders[i].name) # Add the links between the GWs and the tor topo.addLink(context.gateways[0].name, context.tor_info.name) topo.addLink(context.gateways[1].name, context.tor_info.name) else: # Add the links between SFFs for i in range(len(context.sf_forwarders)-1): topo.addLink( context.sf_forwarders[i].name, context.sf_forwarders[i+1].name) # Add the links between SFFs and GWs topo.addLink( context.gateways[0].name, context.sf_forwarders[0].name) topo.addLink( context.gateways[1].name, context.sf_forwarders[len(context.sf_forwarders)-1].name) # Add the link between gw1 and gw2 topo.addLink(context.gateway_client, context.gateway_server) # Add the clients and their links to GW1 for i in range(int(context.clients_number)): h = topo.addHost(context.clients[i].name, ip=context.clients[i].ip_, mac=context.clients[i].mac_) topo.addLink(node1=h, node2=gw1) # Add the servers and their links to GW2 for i in range(len(context.servers)): h = topo.addHost(context.servers[i].name, ip=context.servers[i].ip_, mac=context.servers[i].mac_) topo.addLink(node1=h, node2=gw2) return topo
h1 --- s1 ---------- s2 --- h4 / \ / \ h2/ \ / \ h3 controller """ from mininet.net import Mininet from mininet.topo import Topo from mininet.node import OVSSwitch , OVSController, Ryu, RemoteController from mininet.cli import CLI topo = Topo() s1 = topo.addSwitch('s1' , cls=OVSSwitch) s2 = topo.addSwitch('s2' , cls=OVSSwitch) h1 = topo.addNode('h1') h2 = topo.addNode('h2') h3 = topo.addNode('h3') h4 = topo.addNode('h4') c1 = RemoteController('c1',port=6633) topo.addLink(s1 , h1) topo.addLink(s1 , h2) topo.addLink(s2 , h3) topo.addLink(s2 , h4) topo.addLink(s1 , s2)
class MininetWrapper(object): def __init__(self): self.mininet_client = None self.topology = [] self.delay = None def set_delay(self, delay): delay = str(int(delay)) + 'ms' self.delay = delay def run_mininet(self, topology_string): """ Create and run multiple link network """ self.topo_client = Topo() hosts = set() switches = set() relations = re.sub(r's', '', topology_string) relations = [i.split(':') for i in relations.split(',') if 'h' not in i] relations = [[int(y) - 1 for y in x] for x in relations] builtin.log(relations, 'DEBUG') verticles_count = len(set(list(itertools.chain(*relations)))) builtin.log(self.topology, 'DEBUG') for i in xrange(verticles_count): temp = [] for j in xrange(verticles_count): temp.append(-1) self.topology.append(temp[:]) builtin.log(self.topology, 'DEBUG') for i in relations: self.topology[i[0]][i[1]] = 1 self.topology[i[1]][i[0]] = 1 builtin.log(self.topology, 'DEBUG') for v1, v2 in [x.split(':') for x in str(topology_string).split(',')]: if 'h' in v1 and v1 not in hosts: self.topo_client.addHost(v1) hosts.add(v1) if 'h' in v2 and v2 not in hosts: self.topo_client.addHost(v2) hosts.add(v2) if 's' in v1 and v1 not in switches: self.topo_client.addSwitch(v1) switches.add(v1) if 's' in v2 and v2 not in switches: self.topo_client.addSwitch(v2) switches.add(v2) if self.delay: self.topo_client.addLink(v1, v2, delay=self.delay) else: self.topo_client.addLink(v1, v2) self.mininet_client = Mininet(switch=user_switch, controller=remote_controller, topo=self.topo_client, link=TCLink) self.mininet_client.start() builtin.log('Links info:') for link in self.topo_client.links(withKeys=True, withInfo=True): builtin.log(link) # self.mininet_client.waitConnected(timeout=20) sleep(20) def stop_mininet(self): if self.mininet_client is not None: self.mininet_client.stop() if self.topology: self.topology = [] self.delay = None cleanup() sleep(20) def kill_link(self, host1, host2): host1, host2 = str(host1), str(host2) self.mininet_client.configLinkStatus(host1, host2, 'down') if 'h' not in host1 and 'h' not in host2: num_1 = int(host1[1:]) - 1 num_2 = int(host2[1:]) - 1 self.topology[num_1][num_2] = -1 self.topology[num_2][num_1] = -1 builtin.log(self.topology, 'DEBUG') builtin.log('Down link {0} - {1}'.format(host1, host2), 'DEBUG') def check_link(self, host1, host2): switch = self.mininet_client.getNodeByName(host1) connections = switch.connectionsTo(host2) if connections: return True else: return False def up_link(self, host1, host2): host1, host2 = str(host1), str(host2) self.mininet_client.configLinkStatus(host1, host2, 'up') if 'h' not in host1 and 'h' not in host2: num_1 = int(host1[1:]) - 1 num_2 = int(host2[1:]) - 1 self.topology[num_1][num_2] = 1 self.topology[num_2][num_1] = 1 builtin.log(self.topology, 'DEBUG') builtin.log('Up link {0} - {1}'.format(host1, host2), 'DEBUG') def stop_node(self, name): node = self.mininet_client.getNodeByName(name) node.stop() num_node = int(name[1:]) - 1 self.topology[num_node][num_node] = -1 builtin.log('Node {0} was stoped'.format(name), 'DEBUG') def check_connected_node(self, name): switch = self.mininet_client.getNodeByName(name) return switch.connected() # NOTE(msenin) unstable method - after stoping mininet cant start node # mininet doesn't return exception def start_node(self, name): node = self.mininet_client.getNodeByName(name) # TODO (msenin) add option controller_name controllers = self.mininet_client.controllers builtin.log('Controllers: {0}'.format(controllers), 'DEBUG') node.start([controllers[0]]) def check_rules(self): switches = self.mininet_client.switches results = [] regex = (r'(cookie=[\w\d]+),|(dl_dst=[\w\d:\/]{35})' '|(priority=[\d]+),|(dl_src=[\w\d:\/]{17})') for switch in switches: ans = switch.dpctl('dump-flows -O OpenFlow13') builtin.log( 'Rules on the switch {0}: {1}'.format(switch.name, ans), 'DEBUG') ans_with_regex = "" for m in re.finditer(regex, ans): for i in xrange(1, 5): if m.group(i): ans_with_regex = ans_with_regex + ', ' + m.group(i) builtin.log( 'Rules with regex {0}: {1}'.format(switch.name, ans), 'DEBUG') results.append({switch.name: ans_with_regex}) return results def compare_dumped_flows(self, rules1, rules2): rules_1 = str(rules1) rules_2 = str(rules2) builtin.log('Compare two flow tables(without changing parts): ', 'DEBUG') builtin.log(rules_1, 'DEBUG') builtin.log(rules_2, 'DEBUG') if rules_1 != rules_2: return False return True def ping(self, name1, name2): node1 = self.mininet_client.getNodeByName(name1) node2 = self.mininet_client.getNodeByName(name2) ping = self.mininet_client.ping(hosts=[node1, node2], timeout=10) num1, num2 = name1[1:], name2[1:] cmd1 = node1.cmd('ifconfig') builtin.log('{0}'.format(cmd1), 'DEBUG') cmd1 = node1.cmd('ping -d -c 5 -w 5 10.0.0.' + num2) builtin.log('{0}'.format(cmd1), 'DEBUG') cmd2 = node2.cmd('ifconfig') builtin.log('{0}'.format(cmd2), 'DEBUG') cmd1 = node2.cmd('ping -d -c 5 -w 5 10.0.0.' + num1) builtin.log('{0}'.format(cmd1), 'DEBUG') return int(ping) def check_route_state(self, route): # TODO (msenin) delete method after tests refactoring """Check the state of route :param route: list with verticles (each verticle is switch id) """ route = map(lambda x: int(x) - 1, route) for i in xrange(1, len(route)): prev = route[i - 1] cur = route[i] if (self.topology[prev][prev] == -1 or self.topology[cur][cur] == -1): return False if self.topology[prev][cur] == -1: return False return True def contains_route_in_routes(self, route, routes): builtin.log("route: {0}".format(route), 'DEBUG') builtin.log("routes: {0}".format(routes), 'DEBUG') route = map(lambda x: int(x), route) for i in routes: if i.get('route') and map(lambda x: int(x), i['route']) == route: return True return False def parse_tree(self, resp): """Define and check the routes and links :param resp:json from response """ builtin.log("JSON for parsing: {0}".format(resp), 'DEBUG') source_node_list = set() destination_node_list = set() links_dict = collections.OrderedDict() routes = [] states_dict = dict() route_container = resp.get('route-container') route_list = route_container.get('route-list') route_list_length = len(route_list) # TODO for i in range(0, route_list_length): needed_leaf = i route_leaf = route_list[needed_leaf] leaf_source = route_leaf.get('source') leaf_destination = route_leaf.get('destination') states_dict['source'] = leaf_source states_dict['destination'] = leaf_destination route = route_leaf.get('route', []) for i in range(0, len(route)): route_state = dict() vertexes = set() path = route[i] state = path.get('state') route_state['state'] = state route_state['route'] = vertexes routes.append(route_state) states_dict['routes'] = routes links = path.get('path') links_count = len(links) for j in range(0, links_count): link = links[j] link_source = link.get('source') link_destination = link.get('destination') source_node = link_source.get('source-node') destination_node = link_destination.get('dest-node') source_flow = source_node.split(':')[-1] destination_flow = destination_node.split(':')[-1] vertexes.add(source_flow) vertexes.add(destination_flow) source_node_list.add(source_node) destination_node_list.add(destination_node) links_dict[source_node] = destination_node return states_dict def parse_tree_2(self, resp): """Parse output json from ncn restconfig :param resp:json from response [{'state': 'up', 'destination': '4', 'route': ['1', '4'], 'source': '1', 'id': 100}, .................................................................... {'destination': '3', 'source': '1'}, {'destination': '7', 'source': '1'}] """ builtin.log("JSON for parsing: {0}".format(resp), 'DEBUG') routes = [] route_list = resp.get('route-container').get('route-list') for routes_between_switches in route_list: routes_rest_conf = routes_between_switches.get("route") if routes_rest_conf: # NOTE (msenin) # format of fields 'source' and 'destination': openflow:4 for route_rest in routes_rest_conf: route = {} route['source'] = int(route_rest['source'][9:]) route['destination'] = \ int(route_rest['destination'][9:]) route['state'] = route_rest['state'] pathes = route_rest.get('path') route['id'] = route_rest.get('id') path = [] for link in pathes: link_source = link.get('source') link_destination = link.get('destination') source_node = link_source.get('source-node') destination_node = link_destination.get('dest-node') source_flow = int(source_node[9:]) destination_flow = int(destination_node[9:]) if source_flow not in path: path.append(source_flow) if destination_flow not in path: path.append(destination_flow) route['route'] = path routes.append(route) else: route = {} route['source'] = int(routes_between_switches['source'][9:]) route['destination'] = \ int(routes_between_switches['destination'][9:]) routes.append(route) return routes def check_route_state_by_DOM_tree(self, route, tree): """ return 1 if route up, -1 down and 0 if unexist """ if isinstance(route, str) or isinstance(route, unicode): route = list(route[1:-1].split(',')) route = map(lambda x: int(x), route) builtin.log("route: {0}".format(route), 'DEBUG') tree = self.parse_tree_2(tree) builtin.log("tree: {0}".format(tree), 'DEBUG') filtered_tree = filter(lambda x: x.get('route') == route, tree) if filtered_tree: if filtered_tree[0]['state'] == 'up': return 1 else: return -1 else: return 0 def filter_DOM_tree_by_field(self, condition, tree): # TODO (msenin) add logger tree = self.parse_tree_2(tree) filtered_tree = filter(lambda field: eval(condition), tree) return filtered_tree