コード例 #1
0
ファイル: mctdh.py プロジェクト: vINyLogY/minimisTN
    def init_state(self):
        r"""Form the initial vector according to shape list::

            n_0|   |   |n_p-1
              C_0 ... C_p-1
                 \ | /
              m_0 \|/ m_p-1
                   A

        Returns
        -------
        init : (self.size,) ndarray
            Formally, init = np.concatenate([C_0, ..., C_p-1, A], axis=None),
            where C_i is a (n_i * m_i,) ndarray, i <- {0, ..., p-1},
            A is a (M,) ndarray, and M = m_0 * ... * m_p-1, m_i < n_i.
        """
        dvr_list = self.dvr_list
        c_list = []
        for i, (_, m_i) in enumerate(self.shape_list[:-1]):
            _, v_i = dvr_list[i].solve(n_state=m_i)
            v_i = np.transpose(v_i)
            c_list.append(np.reshape(v_i, -1))
        vec_a = np.zeros(self.size_list[-1])
        vec_a[0] = 1.0
        vec_list = c_list + [vec_a]
        init = np.concatenate(vec_list, axis=None)
        self.vec = init
        self.update_mod_terms()
        return init
コード例 #2
0
    def vectorize(self, use_aux=False, shape_dict=None):
        """Return a vector from the arrays in the tensors in the network of
        self.

        Parameters
        ----------
        use_aux : bool
            `True` to vectorize the arrays in .aux, else to use arrays in 
            .array.
        shape_dict: dict
            Where to save the shape of each tensor.

        Return
        ------
        vec : (n,) ndarray
        """
        vec_list = []
        for t in self.visitor(leaf=False):
            array = t.aux if use_aux else t.array
            vec = np.reshape(array, -1)
            vec_list.append(vec)
            if shape_dict is not None:
                shape_dict[t] = t.shape
        ans = np.concatenate(vec_list, axis=None)
        return ans
コード例 #3
0
ファイル: network.py プロジェクト: vINyLogY/minimisTN
def get_ext_wfns(n_states, wfns, op, search_method='krylov'):
    wfns = np.array(wfns)
    n_states = np.shape(wfns)[1]
    space = np.transpose(np.array(wfns))
    vecs = np.transpose(np.array(wfns))
    assert np.shape(space)[1] <= n_states
    if search_method == 'krylov':
        while True:
            space = linalg.orth(vecs)
            if np.shape(space)[0] >= n_states:
                break
            vecs = list(op @ vecs)
            np.concatenate((space, vecs), axis=1)
        psi = space[:, :n_states]
        return np.transpose(psi)
    else:
        raise NotImplementedError
コード例 #4
0
ファイル: mctdh.py プロジェクト: vINyLogY/minimisTN
 def _normalizer(vec):
     ans = []
     for i in range(self.rank + 1):
         vec_i = self.get_sub_vec(i, vec)
         vec_i = np.reshape(vec_i, -1)
         if i == self.rank:
             std_norm = sqrt(1.0)
         else:
             std_norm = sqrt(self.shape_list[i][1])
         norm = (linalg.norm(vec_i) / std_norm)
         logging.debug(__('norm {}: {}', i, norm))
         ans.append(vec_i / norm)
     ans = np.concatenate(ans, axis=None)
     return ans
コード例 #5
0
ファイル: mctdh.py プロジェクト: vINyLogY/minimisTN
 def term_hamiltonian(self, r, vec):
     """
     Parameters
     ----------
     r : int
     vec : (self.size,) ndarray
     """
     logging.debug(__('Hamiltonian term {}...', r))
     h_term = self.h_terms[r]
     mod_term = self.mod_terms[r]
     steps = len(self.shape_list)
     ans = []
     for i in range(steps):
         v_i = self.get_sub_vec(i, vec)
         if i < steps - 1:
             h_list = [h for j, h in h_term if j == i]
             v_i = self._sp_op(i, v_i, h_list, mod_term)
         else:
             v_i = self._coeff_op(v_i, mod_term)
         v_i = np.reshape(v_i, -1)
         ans.append(v_i)
     ans = np.concatenate(ans, axis=None)
     return ans