コード例 #1
0
ファイル: constraint.py プロジェクト: wuyou33/torq
def invert(A, order):
    n_coeff, n_der = utils.n_coeffs_free_ders(order)
    n_seg = np.shape(A)[0] / 2 / n_der

    # not square or can't figure out the format
    if (np.shape(A)[0] != np.shape(A)[1]  or
                                        n_seg != np.shape(A)[1] / n_coeff or
                                        round(n_seg) != n_seg):
        return np.asmatrix(sp.linalg.pinv(A.todense()))

    else:
        blocks = []
        # use Schur complement as described in:
        # Real-Time Visual-Inertial Mapping, Re-localization and Planning
        # Onboard MAVs in Unknown Environments

        # TODO([email protected]) - don't loop here
        # TODO([email protected]) - is there a better way to slice A?
        for seg in range(n_seg):
            A_seg = A[seg * n_coeff:(seg + 1) * n_coeff,
                      seg * n_coeff:(seg + 1) * n_coeff].todense()
            sigma = np.array(A_seg[:n_der, :n_der].diagonal()).squeeze()
            sigma_inv = np.matrix(np.diag(1 / sigma))
            gamma = np.matrix(A_seg[n_der:, :n_der])
            delta = A_seg[n_der:, n_der:]
            # TODO([email protected]) - is this always invertible?
            delta_inv = np.matrix(np.linalg.inv(delta))

            A_seg_inv = np.r_[np.c_[sigma_inv, np.zeros((n_der, n_der))],
                              np.c_[- delta_inv * gamma * sigma_inv, delta_inv]]

            blocks.append(A_seg_inv)

        return sp.sparse.block_diag(blocks, 'csr')
コード例 #2
0
ファイル: joint_optimize.py プロジェクト: wuyou33/torq
    def __init__(self,
                 waypoints,
                 order,
                 costs,
                 der_fixed,
                 times=None,
                 der_ineq=None,
                 delta=None,
                 print_output=False,
                 closed_loop=False):
        if np.shape(waypoints) != np.shape(der_fixed):
            raise exceptions.InputError(
                waypoints, "Mismatch between size of waypoints" +
                " array and size of derivative fixed" + "array")

        # if der_ineq is None:
        # no inequalities set
        der_ineq = np.array(der_fixed)
        der_ineq[:, :] = False
        # elif np.shape(der_ineq) != np.shape(der_fixed):
        #     raise exceptions.InputError(der_ineq,
        #             "Mismatch between size of der_ineq array and size of derivative fixed array")
        # elif (der_ineq[der_ineq]==der_fixed[der_ineq]).any():
        #     raise exceptions.InputError(der_ineq,"Invalid inequality and fixed input arrays;\n Have conflicting selections of constraints i.e. both are true for the same derivative")

        # constants
        self.waypoints = np.array(waypoints).copy()
        self.order = order
        self.n_der = utils.n_coeffs_free_ders(order)[1]
        self.costs = np.array(costs).copy()
        self.der_fixed = np.array(der_fixed).copy()
        self.der_ineq = np.array(der_ineq).copy()
        self.delta = delta
        self.n_seg = np.shape(waypoints)[1] - 1
        self.print_output = print_output
        self.closed_loop = closed_loop
        self.opt_time = 0.0

        self.Q = None
        self.M = None
        self.A = None
        self.R = None
        self.pinv_A = None
        self.free_ders = None
        self.fixed_ders = None
        self.piece_poly = None
        self.coeffs = None

        # don't need segment times to create the object
        # allow deferral of joint optimization
        if times is not None:
            self.times = np.array(times).copy()
            self.get_free_ders()
            self.get_poly_coeffs()
            self.get_piece_poly()
コード例 #3
0
ファイル: constraint.py プロジェクト: wuyou33/torq
def sparse_indices(times, order):
    """Generate the sparse indices for the constraint matrix

    Richter, Bry, Roy; Polynomial Trajectory Planning for Quadrotor Flight
    Equations 18 & 20; using joint formulation

    Args:
        times: time in which to complete each segment
        order: the order of the polynomial segments

    Returns:
        A tuple with a_0_row, a_0_col, a_t_row, a_t_col, where:
            a_0_row: 0th derivative row indices
            a_0_col: 0th derivative column indices
            a_t_row: higher derivative row indices
            a_t_col: higher derivative column indices
    Raises:
    """
    # TODO([email protected]) could reuse this by returning it
    n_coeff, n_der = utils.n_coeffs_free_ders(order)
    n_seg = np.size(times)

    i, j = np.nonzero(np.tri(n_coeff, n_der, dtype=np.int))

    a_0_row = np.r_[:n_der * n_seg] + np.repeat(np.r_[:n_seg] * n_der, n_der)
    if order % 2 == 0:
        # for even polynomial order, each block is taller by 1
        a_0_col = a_0_row + np.repeat(np.r_[:n_seg], n_der)

        # 2 * n_der is correct here; there are two submatrices of n_der rows each
        # per segment
        a_t_row = np.tile(j, (n_seg)) + \
            np.repeat(np.r_[:n_seg] * 2 * n_der, i.size) + n_der

        # n_coeff is correct here; there is one matrix of n_coeff columns per
        # segment
        a_t_col = np.tile(i, (n_seg)) + \
            np.repeat(np.r_[:n_seg] * n_coeff, i.size)
    else:
        a_0_col = a_0_row  # no copy is ok because a_0_row is not modified later

        # n_coeff is correct here; there is one matrix of n_coeff columns per
        # segment
        a_t_row = np.tile(j, (n_seg)) + \
            np.repeat(np.r_[:n_seg] * n_coeff, i.size) + n_der

        # 2 * n_der is correct here; there are two submatrices of n_der rows each
        # per segment
        a_t_col = np.tile(i, (n_seg)) + \
            np.repeat(np.r_[:n_seg] * 2 * n_der, i.size)

    return (a_0_row, a_0_col, a_t_row, a_t_col)
コード例 #4
0
ファイル: cost.py プロジェクト: wuyou33/torq
def delete(Q, delete_index, new_time, costs, order):
    """
    Delete one waypoint with specified index and set duration of joining segment

    Args:
        Q: previous block diagonal csc or coo scipy sparse matrix of costs
        delete_indices: indices of waypoints to delete
        new_time: duration of segment that joins the waypoints on each side
            of the deletion

    Returns:
        Q: Block diagonal coo scipy sparse matrix for joint optimization

    Raises:
    """

    if Q.format != 'lil':
        Q_calc = Q.tolil(copy=True)

    n_coeff = utils.n_coeffs_free_ders(order)[0]
    n_seg = Q.shape[0]/n_coeff

    if delete_index == n_seg:
        # Change index if the last segment
        index = delete_index - 1
    else:
        index = delete_index

    # Compute indices of parts of matrix to keep
    # start_ind = np.arange(0,index*n_coeff,1)
    # end_ind = np.arange((index+1)*n_coeff,n_seg*n_coeff,1)
    # keep_ind = np.concatenate((start_ind,end_ind))

    # Remove from delete index
    Q_new = sp.sparse.lil_matrix((n_coeff*(n_seg-1),n_coeff*(n_seg-1)))

    if index > 0:
        Q_new[:index*n_coeff,:index*n_coeff] = Q_calc[:index*n_coeff,:index*n_coeff]

    if index < n_seg-1:
        Q_new[index*n_coeff:(n_seg-1)*n_coeff,index*n_coeff:(n_seg-1)*n_coeff] = Q_calc[(index+1)*n_coeff:n_seg*n_coeff,(index+1)*n_coeff:n_seg*n_coeff]

    Q = Q_new.tocsc().copy()

    if delete_index != 0 and delete_index != n_seg: # Nothing to update for the first segment or last segment
        # Update time for adjoining segment
        update(Q, [index-1], new_time, costs, order)

    return Q
コード例 #5
0
ファイル: constraint.py プロジェクト: wuyou33/torq
def insert(A, new_index, new_times, order):
    """
    Insert new waypoints to start at the selected index

    Args:
        A: previous block diagonal coo scipy sparse matrix of constraints
        new_index: index that new waypoints should start at after insertion
        new_waypoints: numpy array
        new_times:
        new_der_fixed:

    Returns:
        A: Block diagonal coo scipy sparse matrix for joint optimization

    Raises:
    """
    if A.format != 'csc':
        A = A.tocsc(copy=True)

    # Compute new matrix part
    A_insert = block_constraint(new_times[1], order).tocsc(copy=True)

    if A_insert.format != 'csc' or A.format != 'csc':
        msg = 'Can only column-insert in place with both csc format, not {0} and {1}.'
        msg = msg.format(A_insert.format, A.format)
        raise ValueError(msg)

    n_coeff = utils.n_coeffs_free_ders(order)[0]
    n_new_seg = np.size(new_times)/2
    n_seg = A.shape[0]/n_coeff

    if new_index > n_seg:
        index = new_index - 1
    else:
        index = new_index

    # Construct new matrix
    A_new = sp.sparse.block_diag((A[:index*n_coeff,:index*n_coeff],A_insert,A[index*n_coeff:,index*n_coeff:]))

    A = A_new.tocsc(copy=True)

    # modify connecting segment
    if new_index != 0 and new_index != n_seg+1: # Nothing to update for the first segment or last segment
        # Update time for adjoining segment
        update(A, [new_index-1], new_times[0], order)

    return A
コード例 #6
0
ファイル: cost.py プロジェクト: wuyou33/torq
def insert(Q, new_index, new_times, costs, order):
    """
    Insert one new waypoint to start at the selected index

    Args:
        Q: previous block diagonal csc or coo scipy sparse matrix of costs
        new_index: index that new waypoints should start at after insertion
        new_waypoints: numpy array
        new_times: array of size 2 with the times for the two segments on either side of the inserted point

    Returns:
        Q: Block diagonal coo scipy sparse matrix for joint optimization

    Raises:
    """

    if Q.format != 'csc':
        Q = Q.tocsc(copy=True)

    # Compute new matrix part
    Q_insert = block_cost(new_times[1], costs, order).tocsc(copy=True)

    if Q_insert.format != 'csc' or Q.format != 'csc':
        msg = 'Can only column-insert in place with both csc format, not {0} and {1}.'
        msg = msg.format(Q_insert.format, Q.format)
        raise ValueError(msg)

    n_coeff = utils.n_coeffs_free_ders(order)[0]
    n_new_seg = np.size(new_times)/2
    n_seg = Q.shape[0]/n_coeff

    if new_index > n_seg:
        index = new_index - 1
    else:
        index = new_index

    # Construct new matrix
    Q_new = sp.sparse.block_diag((Q[:index*n_coeff,:index*n_coeff],Q_insert,Q[index*n_coeff:,index*n_coeff:]))

    Q = Q_new.tocsc(copy=True)

    # modify connecting segment
    if new_index != 0 and new_index != n_seg+1: # Nothing to update for the first segment or last segment
        # Update time for adjoining segment
        update(Q, [new_index-1], new_times[0], costs, order)

    return Q
コード例 #7
0
ファイル: constraint.py プロジェクト: wuyou33/torq
def sparse_values(times, order):
    """Generate the sparse values for the constraint matrix

    Richter, Bry, Roy; Polynomial Trajectory Planning for Quadrotor Flight
    Equations 18 & 20; using joint formulation

    Args:
        times: time in which to complete each segment
        order: the order of the polynomial segments

    Returns:
        A tuple with a_0_val, a_t_val, where:
            a_0_val: 0th derivative values
            a_t_val: higher derivative values
    Raises:
    """
    # TODO([email protected]) could reuse this by returning it
    n_coeff, n_der = utils.n_coeffs_free_ders(order)
    n_seg = np.size(times)

    n_minus_r, prod = utils.poly_der_coeffs(order)

    # raise segment times to n_minus_r power
    t_power = np.reshape(times, (n_seg, 1, 1)) ** n_minus_r


    a_0_val = np.tile(np.diag(prod), (n_seg))  # equation 18
    a_t = np.tile(prod, (n_seg, 1, 1)) * t_power  # equation 20

    # unlike MATLAB, have to convert to linear sequence, index, then convert back
    # which values are below the diagonal?
    a_t_sel = np.squeeze(np.tile(
        [np.tri(n_coeff, n_der, dtype=np.int)], (n_seg, 1, 1)).reshape((1, 1, -1)))

    # transpose a_t and a_t_sel?
    # use triu_indices instead?

    # get the indices for all values
    a_t_idx = np.r_[:n_coeff * n_der * n_seg]

    a_t = np.squeeze(a_t.reshape((1, 1, -1)))

    # get only the values below the diagonal
    a_t_val = a_t[a_t_idx[a_t_sel > 0]]

    return (a_0_val, a_t_val)
コード例 #8
0
ファイル: cost.py プロジェクト: wuyou33/torq
def update(Q, new_indices, new_times, costs, order):
    #TODO([email protected]) - make this an Object to store costs & order?
    n_coeff = utils.n_coeffs_free_ders(order)[0]
    n_seg = np.size(new_times)

    Q_update = block_cost(new_times, costs, order).tocsc(copy=True)

    if Q_update.format != 'csc' or Q.format != 'csc':
        msg = 'Can only column-update in place with both csc format, not {0} and {1}.'
        msg = msg.format(Q_update.format, Q.format)
        raise ValueError(msg)

    # replace the appropriate sections of Q with sections of Q_update
    for i in range(0, len(new_indices)):
        # the slow way:
        Q[new_indices[i] * n_coeff:(new_indices[i] + 1) * n_coeff,
          new_indices[i] * n_coeff:(new_indices[i] + 1) * n_coeff] = Q_update[i * n_coeff:(i + 1) * n_coeff,
                                                                              i * n_coeff:(i + 1) * n_coeff]
コード例 #9
0
ファイル: constraint.py プロジェクト: wuyou33/torq
def update(A, new_indices, new_times, order):
    #TODO([email protected]) - make this an Object to store order?
    n_coeff, n_der = utils.n_coeffs_free_ders(order)
    n_seg = np.size(new_times)

    A_update = block_constraint(new_times, order).tocsc(copy=True)

    if A_update.format != 'csc' or A.format != 'csc':
        msg = 'Can only column-update in place with both csc format, not {0} and {1}.'
        msg = msg.format(A_update.format, A.format)
        raise ValueError(msg)

    # replace the appropriate sections of A with sections of A_update
    for i in range(0, len(new_indices)):
        # the slow way:
        A[new_indices[i] * 2 * n_der:(new_indices[i] + 1) * 2 * n_der,
          new_indices[i] * 2 * n_der:(new_indices[i] + 1) * 2 * n_der] = A_update[i * 2 * n_der:(i + 1) * 2 * n_der,
                                                                                  i * 2 * n_der:(i + 1) * 2 * n_der]
コード例 #10
0
ファイル: cost.py プロジェクト: wuyou33/torq
def block_cost(times, costs, order):
    """Generate the cost matrix for each segment.

    Richter, Bry, Roy; Polynomial Trajectory Planning for Quadrotor Flight
    Equations 10-15; using joint formulation

    Args:
        times: time in which to complete each segment
        cost: weight in the sum of Hessian matrices (Equation 15)
        order: the order of the polynomial segments

    Returns:
        Block diagonal coo scipy sparse matrix for joint optimization
            before summing across cost terms (sum happens upon matrix conversion
            to CSR or CSC format)
    Raises:
    """

    n_coeff = utils.n_coeffs_free_ders(order)[0]
    n_seg = np.size(times)
    block_cost_sparse = block_cost_per_order(times, costs, order)

    # Weighted sum of Hessian cost for each order

    # derivatives from r = 0 to polyOrder where cost is not zero
    # numpy.nonzero returns a tuple; one element for each dimension of input
    # array
    der = np.nonzero(costs)[0]
    costs = np.array(costs)[der]

    # TODO([email protected]) duplicate entries are not summed until
    # converted to CSR/CSC - is this ok?
    return sp.sparse.coo_matrix((costs[block_cost_sparse[0]] *
                                 block_cost_sparse[3],
                                 (block_cost_sparse[1],
                                  block_cost_sparse[2])),
                                shape=(n_coeff * n_seg, n_coeff * n_seg))
コード例 #11
0
ファイル: constraint.py プロジェクト: wuyou33/torq
def block_constraint(times, order):
    """Generate the constraint matrix for beginning and end of each segment.

    Maps between polynomial coefficients and derivatives evaluated at
    beginning and end of segments.

    Bry, Richter, Bachrach and Roy; Agressive Flight of Fixed-Wing and Quadrotor
    Aircraft in Dense Indoor Environments
    Equations 116 - 122; using joint formulation
    Continuity A is from eqn 12
    Boundary Conditions A is from eqn 13

    Args:
        times: time in which to complete each segment
        order: the order of the polynomial segments

    Returns:
        A: Block diagonal coo scipy sparse matrix for joint optimization
    Raises:
    """

    n_coeff, n_der = utils.n_coeffs_free_ders(order)
    n_seg = np.size(times)

    a_0_val, a_t_val = sparse_values(times, order)

    (a_0_row, a_0_col, a_t_row, a_t_col) = sparse_indices(times, order)

    A = sp.sparse.coo_matrix((np.concatenate([a_0_val, a_t_val]),
                              (np.concatenate([a_0_row, a_t_row]),
                               np.concatenate([a_0_col, a_t_col]))),
                             shape=(2 * n_der * n_seg, n_coeff * n_seg))

    # Make the matrix sparse in format
    A = sp.sparse.coo_matrix(A)

    return A
コード例 #12
0
ファイル: joint_optimize.py プロジェクト: wuyou33/torq
    def get_free_ders(self,
                      waypoints_changed=None,
                      der_fixed_changed=None,
                      times_changed=None):
        """Solve for free derivatives of polynomial segments

        Richter, Bry, Roy; Polynomial Trajectory Planning for Quadrotor Flight
        Equation 31

        Uses:
            self.
            waypoints: Numpy array of the waypoints (including derivatives)
            times: time in which to complete each segment (not the transition
                times)
            cost: weight in the sum of Hessian matrices (Equation 15)
            order: the order of the polynomial segments
            der_fixed: Boolean array of n_der (max potential number of free
                derivatives per segment) x n_seg + 1 (one column per waypoint).
                Fixing a derivative at a waypoint is performed by setting the
                corresponding entry to True.

        # TODO([email protected]) - decide how many of these fields to store vs
        # recompute
        Modifies:
            self.
            free_ders: Numpy matrix (column vector) of the free derivatives
            fixed_ders: Numpy matrix (column vector) of the fixed derivatives
            Q: the cost matrix in terms of polynomial coefficients
            M: the selector matrix mapping the ordering of derivatives to/from
                the form where free and fixed derivatives are partitioned
            A: the constraint matrix for segment boundaries
            pinv_A: the (pseudo-)inverse of A
            R: the cost matrix in terms of the free derivatives

        Args:

        Returns:

        Raises:
            minsnap.exceptions.InputError if
                np.size(times) != np.shape(der_fixed)[1] - 1
        """

        # def get_free_ders_setup_matrices(self, waypoints_changed=None,
        #                   der_fixed_changed=None,
        #                   times_changed=None):
        start_timer = time.time()

        if times_changed is None:
            times_changed = np.r_[0:self.n_seg]
        if der_fixed_changed is None:
            der_fixed_changed = np.r_[0:self.n_seg + 1]
        if waypoints_changed is None:
            waypoints_changed = np.r_[0:self.n_seg + 1]

        waypoints = self.waypoints
        times = self.times
        costs = self.costs
        order = self.order
        der_fixed = self.der_fixed
        der_ineq = self.der_ineq
        delta = self.delta
        n_seg = self.n_seg
        n_der = utils.n_coeffs_free_ders(order)[1]
        n_ineq = sum(sum(der_ineq))

        if np.size(times) != np.shape(der_fixed)[1] - 1:
            raise exceptions.InputError(
                times, "Mismatch between number of segment times" +
                " and number of segments")

        if np.shape(waypoints) != np.shape(der_fixed):
            raise exceptions.InputError(
                waypoints, "Mismatch between size of waypoints" +
                " array and size of derivative fixed" + "array")

        waypoints = np.matrix(waypoints)

        if n_ineq > 0:
            #TODO([email protected] & [email protected]) - investigate other ways to prevent singular matrices here
            limit = 0.03
            if sum(np.array(times) < limit) > 0:
                print(
                    "Warning: changing times because a lower limit has been reached"
                )
                temp = np.array(times)
                temp[temp < limit] = limit
                times = np.array(temp)
                self.times = times

        # See README.md on MATLAB vs Octave vs Numpy linear equation system solving
        # Porting this code: R{i} = M{i} / A{i}' * Q{i} / A{i} * M{i}';
        # With even polynomial order, the odd number of coefficients is not equal
        # to twice the number of free derivatives (floor of (odd # / 2)).
        # Therefore, A is not square.

        # Based on some quick checks, the inverse of A is still quite sparse,
        # especially when only the 0th derivative is fixed at internal
        # waypoints.

        # convert COO sparse output to CSC for fast matrix arithmetic
        if np.size(times_changed) or self.Q is None or self.A is None:
            if (self.Q is None
                    or self.A is None):  #or np.size(times_changed) > 1):
                Q = cost.block_cost(times, costs, order).tocsc(copy=True)
                A = constraint.block_constraint(times, order).tocsc(copy=True)
            else:
                # if we know which segment times have changed, only update
                # the corresponding blocks in the block matrix
                cost.update(self.Q, times_changed, times[times_changed], costs,
                            order)
                constraint.update(self.A, times_changed, times[times_changed],
                                  order)
                Q = self.Q
                A = self.A

            if (A.shape[0] == A.shape[1]):
                pinv_A = sp.sparse.linalg.inv(A)
                # TODO([email protected]) - could this be made to outperform the line above?
                #pinv_A = constraint.invert(A, order)
            else:
                # is there some way to keep this sparse? sparse SVD?
                pinv_A = np.asmatrix(sp.linalg.pinv(A.todense()))
        else:
            # TODO([email protected]) - is this the cleanest way?
            Q = self.Q
            A = self.A
            pinv_A = self.pinv_A

        if np.size(der_fixed_changed) or self.M is None:
            M = selector.block_selector(
                der_fixed, closed_loop=self.closed_loop).tocsc(copy=True)
        else:
            # TODO([email protected]) - is this the cleanest way?
            M = self.M

        if np.size(times_changed) or np.size(
                der_fixed_changed) or self.R is None:
            # all are matrices; OK to use * for multiply
            # R{i} = M{i} * pinv(full(A{i}))' * Q{i} * pinv(full(A{i})) * M{i}';
            R = M * pinv_A.T * Q * pinv_A * M.T

            # partition R by slicing along columns, converting to csr, then slicing
            # along rows
            if self.closed_loop:
                num_der_fixed = np.sum(der_fixed[:, :-1])
            else:
                num_der_fixed = np.sum(der_fixed)

            # Equation 29
            try:
                R_free = R[:, num_der_fixed:].tocsr()
            except AttributeError:
                # oops - we are a numpy matrix
                R_free = R[:, num_der_fixed:]
            R_fixed_free = R_free[:num_der_fixed, :]
            R_free_free = R_free[num_der_fixed:, :]

        else:
            R = self.R

            if hasattr(self, 'R_fixed_free'):
                R_fixed_free = self.R_fixed_free
                R_free_free = self.R_free_free
            else:
                # partition R by slicing along columns, converting to csr, then slicing
                # along rows
                if self.closed_loop:
                    num_der_fixed = np.sum(der_fixed[:, :-1])
                else:
                    num_der_fixed = np.sum(der_fixed)

                # Equation 29
                try:
                    R_free = R[:, num_der_fixed:].tocsr()
                except AttributeError:
                    # oops - we are a numpy matrix
                    R_free = R[:, num_der_fixed:]
                R_fixed_free = R_free[:num_der_fixed, :]
                R_free_free = R_free[num_der_fixed:, :]

        # TODO([email protected]) - transpose waypoints and der_fixed at input
        if not self.closed_loop:
            fixed_ders = waypoints.T[np.nonzero(der_fixed.T)].T  # Equation 31
        else:
            fixed_ders = waypoints[:, :-1].T[np.nonzero(
                der_fixed[:, :-1].T)].T  # Equation 31
        """ Solve """
        # the fixed derivatives, D_F in the paper, are just the waypoints for which
        # der_fixed is true
        # DP{i} = -RPP \ RFP' * DF{i};

        if n_ineq == 0:
            # Run for unconstrained case:
            # Solve for the free derivatives
            # Solve the unconstrained system
            free_ders = np.asmatrix(
                sp.sparse.linalg.spsolve(R_free_free,
                                         -R_fixed_free.T * fixed_ders)).T

        # Run for Constrained cases
        elif n_ineq > 0:  # If there are inequality constraints
            # Inequalities
            # Isolate the waypoints for which there is an inequality
            ineq_way_p = waypoints.T[np.nonzero(der_ineq.T)].T

            if type(delta) != float:
                # Take out the delta for the inequality constrained parts
                ineq_delta = delta.T[np.nonzero(der_ineq.T)].reshape(
                    [ineq_way_p.shape[0], 1])
            else:
                # Just a constant
                ineq_delta = delta

            W = np.concatenate((
                (ineq_way_p - ineq_delta),
                (-ineq_way_p - ineq_delta),
            ),
                               axis=0)

            # Selector matix
            if np.size(der_fixed_changed) or not hasattr(self, 'E'):
                E = constraint.block_ineq_constraint(der_fixed,
                                                     der_ineq).tocsc(copy=True)
            elif self.E is None:
                E = constraint.block_ineq_constraint(der_fixed,
                                                     der_ineq).tocsc(copy=True)
            else:
                E = self.E

            ### Solve with CVXOPT
            # Setup matrices
            P = matrix(2 * R_free_free.toarray(), tc='d')
            q_vec = matrix(np.array(2 * fixed_ders.T * R_fixed_free).T, tc='d')
            G = matrix(-E.toarray().astype(np.double), tc='d')
            h_vec = matrix(np.array(-W), tc='d')

            # Checks on the problem setup
            if np.linalg.matrix_rank(np.concatenate((P, G))) < P.size[0]:
                print('Warning: rank of [P;G] {} is less than size of P: {}'.
                      format(np.linalg.matrix_rank(np.concatenate((P, G))),
                             P.size[0]))
            else:
                if self.print_output:
                    print(
                        'Rank of A is {} size is {}\nRank for Q is {}, size is {}'
                        .format(np.linalg.matrix_rank(A.toarray()), A.shape,
                                np.linalg.matrix_rank(Q.toarray()), Q.shape))
                    print('Rank of R is {}, size is {}'.format(
                        np.linalg.matrix_rank(R.toarray()), R.shape))
                    print(
                        'Rank P is {}\nRank of G is: {}\nRank of [P;G] {} size of P: {}\n'
                        .format(np.linalg.matrix_rank(P),
                                np.linalg.matrix_rank(G),
                                np.linalg.matrix_rank(np.concatenate((P, G))),
                                P.size[0]))

            # To suppress output
            solvers.options['show_progress'] = False

            # Run cvxopt solver
            sol = solvers.qp(P, q_vec, G, h_vec)  #,initvals=primalstart)

            # Solution
            free_ders = np.matrix(sol['x'])

            if self.print_output:
                print('cvx solution is:\n{}'.format(free_ders))
                print('cvx cost is:\n{}'.format(sol['primal objective']))
                print('Constraints are: \n{}'.format(E * free_ders - W))

        # self.fixed_terms = fixed_terms
        self.opt_time = time.time() - start_timer
        self.free_ders = free_ders
        self.fixed_ders = fixed_ders
        self.Q = Q
        self.M = M
        self.A = A
        self.pinv_A = pinv_A
        self.R = R
        self.R_fixed_free = R_fixed_free
        self.R_free_free = R_free_free
コード例 #13
0
ファイル: joint_optimize.py プロジェクト: wuyou33/torq
def main():
    costs = [0, 0, 0, 0, 1]
    order = max(np.nonzero(costs)[0]) * 2 - 1
    n_der = utils.n_coeffs_free_ders(order)[1]

    num_internal = 1  #98
    # float derivatives at internal waypoints and fix at beginning and end
    inner = [[True] + [False] * num_internal + [True]] * (n_der - 1)
    # fix 0th derivative at internal waypoints
    der_fixed = [[True] * (num_internal + 2)]
    der_fixed.extend(inner)

    # waypoints = [range(num_internal + 2)]
    waypoints = [[0, 1, 0]]
    waypoints.extend([[0] * (num_internal + 2)] * (n_der - 1))

    times = [1] * (num_internal + 1)
    print("\nTrajectory for:\nWaypoints:\n")
    pp(np.array(waypoints))
    print("\nSegment times:\n")
    pp(np.array(times))
    print("\ncost {}; poly order {};\n".format(costs, order))
    result = PolyTraj(waypoints,
                      order,
                      costs,
                      der_fixed,
                      times,
                      closed_loop=True)
    print(result.free_ders)

    if not result.check_continuity():
        print("\nFailed continuity check")

    costs = [0, 0, 0, 0, 1]
    num_internal = 0

    # give the optimization enough free derivatives
    order = max(np.nonzero(costs)[0] + 1) * 2 - 1
    n_der = utils.n_coeffs_free_ders(order)[1]
    print(n_der)

    num_internal = 4
    # float derivatives at internal waypoints and fix at beginning and end
    inner = [[True] + [False] * num_internal + [True]] * (n_der - 1)
    # fix 0th derivative at internal waypoints
    der_fixed = [[True] * (num_internal + 2)]
    der_fixed.extend(inner)
    print(der_fixed)
    waypoints = [range(num_internal + 2)]
    waypoints.extend([[0] * (num_internal + 2)] * (n_der - 1))

    times = [0.2] * (num_internal + 1)
    print("\nTrajectory for:\nWaypoints:\n")
    pp(np.array(waypoints))
    print("\nSegment times:\n")
    pp(np.array(times))
    print("\ncost {}; poly order {};\n".format(costs, order))

    result = PolyTraj(waypoints, order, costs, der_fixed, times)
    print(result.free_ders)

    # CHANGE FOR INEQUALITY CONSTRAINTS
    delta = 0.2
    der_ineq = np.array(der_fixed)
    der_ineq[:, [0, -1]] = False
    # der_ineq[:,:] = False
    der_fixed = np.array(der_fixed)
    der_fixed[0, 1:-1] = False
    print("fixed mat = \n{}\n".format(der_fixed))
    print("ineq mat = \n{}\n".format(der_ineq))
    result2 = PolyTraj(waypoints, order, costs, der_fixed, times, der_ineq,
                       delta)
    result2.update_times(times)
    # print(result.free_ders)

    # costs = [0, 0, 0, 0, 1]
    # num_internal = 0
    #
    # # give the optimization enough free derivatives
    # order = max(np.nonzero(costs)[0] + 1) * 2 - 1
    # n_der = utils.n_coeffs_free_ders(order)[1]
    #
    # # float derivatives at internal waypoints and fix at beginning and end
    # inner = [[True] + [False] * num_internal + [True]] * (n_der - 1)
    # # fix 0th derivative at internal waypoints
    # der_fixed = [[True] * (num_internal + 2)]
    # der_fixed.extend(inner)
    #
    # waypoints = [range(num_internal + 2)]
    # waypoints.extend([[0] * (num_internal + 2)] * (n_der - 1))
    #
    # times = [1] * (num_internal + 1)
    # print("\nTrajectory for:\nWaypoints:\n")
    # pp(np.array(waypoints))
    # print("\nSegment times:\n")
    # pp(np.array(times))
    # print("\ncost {}; poly order {};\n".format(costs, order))
    #
    # result = PolyTraj(waypoints, order, costs, der_fixed)
    # result.update_times(times)
    # print(result.free_ders)

    # Test new functions
    costs = [0, 0, 0, 0, 1]
    order = max(np.nonzero(costs)[0]) * 2 - 1
    n_der = utils.n_coeffs_free_ders(order)[1]

    num_internal = 3
    # float derivatives at internal waypoints and fix at beginning and end
    inner = [[True] + [False] * num_internal + [True]] * (n_der - 1)
    # fix 0th derivative at internal waypoints
    der_fixed = [[True] * (num_internal + 2)]
    der_fixed.extend(inner)

    waypoints = np.zeros([n_der, num_internal + 2])
    waypoints[0, :] = np.arange(0, num_internal + 2, 1.0)

    times = [1.0] * (num_internal + 1)

    pol = PolyTraj(waypoints, order, costs, der_fixed, times)

    new_index = waypoints.shape[1] - 1
    new_waypoint = pol.waypoints[:, new_index].copy()
    new_waypoint[0] = 1.5
    new_times = [result.times[new_index] / 2, result.times[new_index] / 2]
    new_der_fixed = pol.der_fixed[:, new_index].copy()

    a1 = pol.free_ders.copy()
    pol.insert(new_index + 1,
               new_waypoint,
               new_times,
               new_der_fixed,
               defer=False)
    a2 = pol.free_ders.copy()
    pol.delete(new_index + 1, 1.0, defer=False)
    a3 = pol.free_ders.copy()

    import pdb
    pdb.set_trace()
    costs = [0, 0, 0, 1]
    order = max(np.nonzero(costs)[0]) * 2 - 1
    waypoints_n = np.zeros((3, 5))
    waypoints_n[0, :] = [0, 1.0, 2.0, 3.0, 0]
    der_fixed_n = np.zeros(waypoints_n.shape, dtype=bool)
    # der_fixed_n[:,[0,2]] = True
    der_fixed_n[0, :] = True
    times = np.ones(waypoints_n.shape[1] - 1)
    pol = PolyTraj(waypoints_n,
                   order,
                   costs,
                   der_fixed_n,
                   times,
                   closed_loop=True)
    n_laps = 2
    entry_ID = 3
    exit_ID = 1
    import pdb
    pdb.set_trace()
    out_pol = pol.create_n_laps(n_laps, entry_ID, exit_ID)

    import pdb
    pdb.set_trace()
    if not result.check_continuity():
        print("\nFailed continuity check")
コード例 #14
0
ファイル: test_utils.py プロジェクト: wuyou33/torq
 def test_n_coeffs_free_ders_odd(self):
     """Test # coeffs and free ders with odd order"""
     np.testing.assert_equal(utils.n_coeffs_free_ders(9), (10, 5))
コード例 #15
0
ファイル: test_utils.py プロジェクト: wuyou33/torq
 def test_n_coeffs_free_ders_even(self):
     """Test # coeffs and free ders with even order"""
     np.testing.assert_equal(utils.n_coeffs_free_ders(10), (11, 5))
コード例 #16
0
ファイル: test_utils.py プロジェクト: wuyou33/torq
 def test_n_coeffs_free_ders_negative(self):
     np.testing.assert_equal(utils.n_coeffs_free_ders(self.negative_order),
                             (0, 0))
コード例 #17
0
ファイル: cost.py プロジェクト: wuyou33/torq
def block_cost_per_order(times, costs, order, return_all=False):
    """Generate the sparse indices and values for all cost orders

    Richter, Bry, Roy; Polynomial Trajectory Planning for Quadrotor Flight
    Equations 10-15; using joint formulation

    This is broken out as a separate function for testing purposes.

    Args:
        times: time in which to complete each segment
        cost: weight in the sum of Hessian matrices (Equation 15)
        order: the order of the polynomial segments
        return_all: Whether to return all cost terms even if only some are
            nonzero

    Returns:
        A tuple, (i, j, k, val) where i is the index of the cost order, j is
            the row, k is the column, and val is the appropriate Hessian value
    Raises:
    """

    n_coeff = utils.n_coeffs_free_ders(order)[0]
    n_seg = np.size(times)

    # debugging feature that returns the Hessian for each derivative order
    if return_all:
        der = np.ones(n_coeff)

    # derivatives from r = 0 to polyOrder where cost is not zero
    # numpy.nonzero returns a tuple; one element for each dimension of input
        # array
    der = np.nonzero(costs)[0]

    # changed dimension order here with respect to MATLAB scripts
    # due to numpy native print order
    der_outer_prods = np.zeros((np.size(der), n_coeff, n_coeff))
    t_power = np.zeros(np.shape(der_outer_prods))
    for i in range(np.size(der)):
        der_order = der[i]

        if der_order > 0:
            der_outer_prods[i, :, :] = utils.poly_hessian_coeffs(order,
                                                                 der_order)[1]
        else:
            # empty product because r=0-1 is less than m=0
            der_outer_prods[i, :, :] = np.ones((n_coeff, n_coeff))

        [row, col] = np.mgrid[:n_coeff, :n_coeff]
        # coefficients of terms according to their order; t is raised to this
        # power, and each term is divided by this value as well
        t_power[i, :, :] = row + col + np.ones(np.shape(row)) * \
            (-2 * der_order + 1)

    # See Equation 14 - strictly greater than 0
    gt_zero_idx = np.nonzero(t_power > 0)

    # this works for a single cost term and for multiple cost terms
    cost_per_order = 2 * np.expand_dims(der_outer_prods[gt_zero_idx], axis=1) \
        * times ** np.expand_dims(t_power[gt_zero_idx], axis=1) \
        / np.expand_dims(t_power[gt_zero_idx], axis=1)

    # first list in tuple determines index for 3rd dimension of sparse matrix,
    # which gives the derivative order that the cost was calculated for

    # index in cost_per_order corresponding to the length of the segment times
    # list tells which block in sparse matrix to insert into

    # need to duplicate gt_zero_idx and offset to the appropriate block

    tiled_idx = np.tile(gt_zero_idx, (1, np.size(times)))

    tiled_idx[1:, np.size(gt_zero_idx[0]):] \
        += np.tile(n_coeff * np.r_[1:np.size(times)],
                   (np.size(gt_zero_idx[0]), 1)).T.flatten()

    return (tiled_idx[0], tiled_idx[1], tiled_idx[2],
            cost_per_order.T.flatten())
コード例 #18
0
ファイル: test_utils.py プロジェクト: wuyou33/torq
 def test_n_coeffs_free_ders_float(self):
     np.testing.assert_equal(utils.n_coeffs_free_ders(self.float_order),
                             (10, 5))