コード例 #1
0
    }


#aupdc = make_scorer(score_func=average_precision_score, greater_is_better=True,needs_proba=True,)
#results = permutation_importance(rf, X, y, scorer=aupdc, n_vars=10, n_jobs=50)

from mintpy.mintpy.main.interpret_toolkit import InterpretToolkit
myInterpreter = InterpretToolkit(model=[rf],
                                 model_names=['Random Forest'],
                                 examples=X,
                                 targets=y)

start_time = datetime.datetime.now()

results = myInterpreter.calc_permutation_importance(n_vars=10,
                                                    evaluation_fn='auprc',
                                                    subsample=1.0,
                                                    njobs=50,
                                                    nbootstrap=10)

duration = datetime.datetime.now() - start_time
seconds = duration.total_seconds()
hours = seconds // 3600
minutes = (seconds % 3600) // 60
seconds = seconds % 60

message = f""" 
               Duration : {hours:.2f} hours : {minutes:.2f} minutes : {seconds:.2f} seconds
              """
print(message)
コード例 #2
0
    #        examples_transformed, target_values_transformed = rus.fit_resample(examples, target_values)
    #    else:
    #        examples_transformed = examples
    #        target_values_transformed = target_values
    #else:
    #    models=[model.steps[-1][1]]
    #    examples_transformed, target_values_transformed = just_transforms(model, examples, target_values)
    #    feature_names.remove('Run Date')

    myInterpreter = InterpretToolkit(models=models,
                                     model_names=model_names,
                                     examples=examples,
                                     targets=targets,
                                    )

    results = myInterpreter.calc_permutation_importance(n_vars=n_vars, evaluation_fn=metric, 
            subsample=subsample, n_jobs=njobs, n_bootstrap=nbootstrap, verbose=True, perm_method=method)
    
    results_fname = join(perm_imp_path, f'permutation_importance_{model_name}_{target}_{time}_{data_mode}_{metric}{drop_opt}{resample}{calibrate}{method}.nc')

    print(f'Saving {results_fname}...')
    myInterpreter.save_results(fname=results_fname, data=results)

    duration =  datetime.datetime.now() - start_time
    seconds = duration.total_seconds()
    hours = seconds // 3600
    minutes = (seconds % 3600) // 60
    seconds = seconds % 60

    message = f""" 
               {model_name} {target} {time} 
               Permutation important results are done!