コード例 #1
0
def readCommand( argv ):
    "Processes the command used to run from the command line."
    from optparse import OptionParser
    parser = OptionParser(USAGE_STRING)

    parser.add_option('-c', '--classifier', help=default('The type of classifier'), choices=['1vr', '1v1', 'mira'], default='1vr')
    parser.add_option('-t', '--training', help=default('The size of the training set'), default=TRAIN_SET_SIZE, type="int")
    parser.add_option('-f', '--features', help=default('Whether to use enhanced features'), default=False, action="store_true")
    parser.add_option('-a', '--autotune', help=default("Whether to automatically tune hyperparameters"), default=False, action="store_true")
    parser.add_option('-i', '--iterations', help=default("Maximum iterations to run training"), default=3, type="int")
    parser.add_option('-s', '--test', help=default("Amount of test data to use"), default=TEST_SET_SIZE, type="int")
    parser.add_option('-v', '--validate', help=default("Whether to validate when training (for graphs)"), default=False, action="store_true")
    parser.add_option('-d', '--dataset', help=default("Specifies the data set to use"), choices=['d1', 'd2'], default='d1')
    parser.add_option('-k', '--classes', help=default("Specifies the number of classes"), default=10, type="int")

    options, otherjunk = parser.parse_args(argv)
    if len(otherjunk) != 0: raise Exception('Command line input not understood: ' + str(otherjunk))
    args = {}

    # Set up variables according to the command line input.
    print "Doing classification"
    print "--------------------"
    print "classifier:\t\t" + options.classifier
    print "using enhanced features?:\t" + str(options.features)
    print "training set size:\t" + str(options.training)

    if (options.features):
        featureFunction = enhancedFeatureExtractorDigit
    else:
        featureFunction = basicFeatureExtractorDigit
    
    legalLabels = range(options.classes)

    if options.training <= 0:
        print "Training set size should be a positive integer (you provided: %d)" % options.training
        print USAGE_STRING
        sys.exit(2)

    if(options.classifier == "1vr"):
       classifier = perceptron1vr.Perceptron1vrClassifier(legalLabels,options.iterations)
    elif(options.classifier == "1v1"):
        classifier = perceptron1v1.Perceptron1v1Classifier(legalLabels, options.iterations)
    elif(options.classifier == 'mira'):
        classifier = mira.MiraClassifier(legalLabels, options.iterations)
    else:
        print "Unknown classifier:", options.classifier
        print USAGE_STRING
        sys.exit(2)


    args['classifier'] = classifier
    args['featureFunction'] = featureFunction

    return args, options
コード例 #2
0
def readCommand(argv):
    "Processes the command used to run from the command line."
    from optparse import OptionParser
    parser = OptionParser(USAGE_STRING)

    parser.add_option('-c',
                      '--classifier',
                      help=default('The type of classifier'),
                      choices=[
                          'mostFrequent', 'nb', 'naiveBayes', 'perceptron',
                          'mira', 'minicontest'
                      ],
                      default='mostFrequent')
    parser.add_option('-d',
                      '--data',
                      help=default('Dataset to use'),
                      choices=['digits', 'faces', 'pacman'],
                      default='digits')
    parser.add_option('-t',
                      '--training',
                      help=default('The size of the training set'),
                      default=100,
                      type="int")
    parser.add_option('-f',
                      '--features',
                      help=default('Whether to use enhanced features'),
                      default=False,
                      action="store_true")
    parser.add_option('-o',
                      '--odds',
                      help=default('Whether to compute odds ratios'),
                      default=False,
                      action="store_true")
    parser.add_option('-1',
                      '--label1',
                      help=default("First label in an odds ratio comparison"),
                      default=0,
                      type="int")
    parser.add_option('-2',
                      '--label2',
                      help=default("Second label in an odds ratio comparison"),
                      default=1,
                      type="int")
    parser.add_option('-w',
                      '--weights',
                      help=default('Whether to print weights'),
                      default=False,
                      action="store_true")
    parser.add_option(
        '-k',
        '--smoothing',
        help=default("Smoothing parameter (ignored when using --autotune)"),
        type="float",
        default=2.0)
    parser.add_option(
        '-a',
        '--autotune',
        help=default("Whether to automatically tune hyperparameters"),
        default=False,
        action="store_true")
    parser.add_option('-i',
                      '--iterations',
                      help=default("Maximum iterations to run training"),
                      default=3,
                      type="int")
    parser.add_option('-s',
                      '--test',
                      help=default("Amount of test data to use"),
                      default=TEST_SET_SIZE,
                      type="int")
    parser.add_option('-g',
                      '--agentToClone',
                      help=default("Pacman agent to copy"),
                      default=None,
                      type="str")

    options, otherjunk = parser.parse_args(argv)
    if len(otherjunk) != 0:
        raise Exception('Command line input not understood: ' + str(otherjunk))
    args = {}

    # Set up variables according to the command line input.
    print "Doing classification"
    print "--------------------"
    print "data:\t\t" + options.data
    print "classifier:\t\t" + options.classifier
    if not options.classifier == 'minicontest':
        print "using enhanced features?:\t" + str(options.features)
    else:
        print "using minicontest feature extractor"
    print "training set size:\t" + str(options.training)
    if (options.data == "digits"):
        printImage = ImagePrinter(DIGIT_DATUM_WIDTH,
                                  DIGIT_DATUM_HEIGHT).printImage
        if (options.features):
            featureFunction = enhancedFeatureExtractorDigit
        else:
            featureFunction = basicFeatureExtractorDigit
        if (options.classifier == 'minicontest'):
            featureFunction = contestFeatureExtractorDigit
    elif (options.data == "faces"):
        printImage = ImagePrinter(FACE_DATUM_WIDTH,
                                  FACE_DATUM_HEIGHT).printImage
        if (options.features):
            featureFunction = enhancedFeatureExtractorFace
        else:
            featureFunction = basicFeatureExtractorFace
    elif (options.data == "pacman"):
        printImage = None
        if (options.features):
            featureFunction = enhancedFeatureExtractorPacman
        else:
            featureFunction = basicFeatureExtractorPacman
    else:
        print "Unknown dataset", options.data
        print USAGE_STRING
        sys.exit(2)

    if (options.data == "digits"):
        legalLabels = range(10)
    else:
        legalLabels = ['Stop', 'West', 'East', 'North', 'South']

    if options.training <= 0:
        print "Training set size should be a positive integer (you provided: %d)" % options.training
        print USAGE_STRING
        sys.exit(2)

    if options.smoothing <= 0:
        print "Please provide a positive number for smoothing (you provided: %f)" % options.smoothing
        print USAGE_STRING
        sys.exit(2)

    if options.odds:
        if options.label1 not in legalLabels or options.label2 not in legalLabels:
            print "Didn't provide a legal labels for the odds ratio: (%d,%d)" % (
                options.label1, options.label2)
            print USAGE_STRING
            sys.exit(2)

    if (options.classifier == "mostFrequent"):
        classifier = mostFrequent.MostFrequentClassifier(legalLabels)
    elif (options.classifier == "naiveBayes" or options.classifier == "nb"):
        classifier = naiveBayes.NaiveBayesClassifier(legalLabels)
        classifier.setSmoothing(options.smoothing)
        if (options.autotune):
            print "using automatic tuning for naivebayes"
            classifier.automaticTuning = True
        else:
            print "using smoothing parameter k=%f for naivebayes" % options.smoothing
    elif (options.classifier == "perceptron"):
        if options.data != 'pacman':
            classifier = perceptron.PerceptronClassifier(
                legalLabels, options.iterations)
        else:
            classifier = perceptron_pacman.PerceptronClassifierPacman(
                legalLabels, options.iterations)
    elif (options.classifier == "mira"):
        if options.data != 'pacman':
            classifier = mira.MiraClassifier(legalLabels, options.iterations)
        if (options.autotune):
            print "using automatic tuning for MIRA"
            classifier.automaticTuning = True
        else:
            print "using default C=0.001 for MIRA"
    elif (options.classifier == 'minicontest'):
        import minicontest
        classifier = minicontest.contestClassifier(legalLabels)
    else:
        print "Unknown classifier:", options.classifier
        print USAGE_STRING

        sys.exit(2)

    args['agentToClone'] = options.agentToClone

    args['classifier'] = classifier
    args['featureFunction'] = featureFunction
    args['printImage'] = printImage

    return args, options
コード例 #3
0
def readCommand( argv ):
  "Processes the command used to run from the command line."
  from optparse import OptionParser
  parser = OptionParser(USAGE_STRING)

  parser.add_option('-c', '--classifier', help=default('The type of classifier'), choices=['mostFrequent', 'nb', 'naiveBayes', 'perceptron','mira'], default='perceptron')
  parser.add_option('-d', '--data', help=default('Dataset to use'), choices=['digits', 'faces'], default='digits')
  parser.add_option('-t', '--training', help=default('The size of the training set'), default=100, type="int")
  parser.add_option('-f', '--features', help=default('Whether to use enhanced features'), default=False, action="store_true")
  parser.add_option('-o', '--odds', help=default('Whether to compute odds ratios'), default=False, action="store_true")
  parser.add_option('-1', '--label1', help=default("First label in an odds ratio comparison"), default=0, type="int")
  parser.add_option('-2', '--label2', help=default("Second label in an odds ratio comparison"), default=1, type="int")
  parser.add_option('-w', '--weights', help=default('Whether to print weights'), default=False, action="store_true")
  parser.add_option('-k', '--smoothing', help=default("Smoothing parameter (ignored when using --autotune)"), type="float", default=2.0)
  parser.add_option('-a', '--autotune', help=default("Whether to automatically tune hyperparameters"), default=False, action="store_true")
  parser.add_option('-i', '--iterations', help=default("Maximum iterations to run training"), default=3, type="int")
  parser.add_option('-s', '--test', help=default("Amount of test data to use"), default=TEST_SET_SIZE, type="int")
  parser.add_option('-n', '--analysis', help=default("Shows which data is wrongly predicted"), default=True, action="store_true")
  parser.add_option('-r', '--random', help=default("Trains the data set using random data and calculates averages for percent accuracy and standard deviation"), default=True, action="store_true")

  options, otherjunk = parser.parse_args(argv)
  if len(otherjunk) != 0: raise Exception('Command line input not understood: ' + str(otherjunk))
  args = {}

  # Set up variables according to the command line input.
  print ("Doing classification")
  print ("--------------------")
  print ("Data:\t\t" + options.data)
  print ("Classifier:\t\t" + options.classifier)
  print ("Using enhanced features?:\t" + str(options.features))
  if not options.random:
      print ("Training set size:\t" + str(options.training))
  if(options.data=="digits"):
    printImage = ImagePrinter(DIGIT_DATUM_WIDTH, DIGIT_DATUM_HEIGHT).printImage
    if (options.features):
      featureFunction = enhancedFeatureExtractorDigit
    else:
      featureFunction = basicFeatureExtractorDigit
  elif(options.data=="faces"):
    printImage = ImagePrinter(FACE_DATUM_WIDTH, FACE_DATUM_HEIGHT).printImage
    if (options.features):
      featureFunction = enhancedFeatureExtractorFace
    else:
      featureFunction = basicFeatureExtractorFace
  else:
    print ("Unknown dataset", options.data)
    print (USAGE_STRING)
    sys.exit(2)

  if(options.data=="digits"):
    legalLabels = range(10)
  else:
    legalLabels = range(2)

  if options.training <= 0:
    print ("Training set size should be a positive integer (you provided: %d)" % options.training)
    print (USAGE_STRING)
    sys.exit(2)

  if options.smoothing <= 0:
    print ("Please provide a positive number for smoothing (you provided: %f)" % options.smoothing)
    print (USAGE_STRING)
    sys.exit(2)

  if options.odds:
    if options.label1 not in legalLabels or options.label2 not in legalLabels:
      print ("Didn't provide a legal labels for the odds ratio: (%d,%d)" % (options.label1, options.label2))
      print (USAGE_STRING)
      sys.exit(2)
      
  if(options.classifier == "naiveBayes" or options.classifier == "nb"):
    classifier = naiveBayes.NaiveBayesClassifier(legalLabels)
    classifier.setSmoothing(options.smoothing)
    if (options.autotune):
        print ("Using automatic tuning for naivebayes")
        classifier.automaticTuning = True
    else:
        print ("Using smoothing parameter k=%f for naivebayes" %  options.smoothing)
  elif(options.classifier == "perceptron"):
    classifier = perceptron.PerceptronClassifier(legalLabels,options.iterations)
  elif(options.classifier == "mira"):
    classifier = mira.MiraClassifier(legalLabels, options.iterations)
    if (options.autotune):
        print ("Using automatic tuning for MIRA")
        classifier.automaticTuning = True
    else:
        print ("Using default C=0.001 for MIRA")
  else:
    print ("Unknown classifier:", options.classifier)
    print (USAGE_STRING)

    sys.exit(2)

  args['classifier'] = classifier
  args['featureFunction'] = featureFunction
  args['printImage'] = printImage

  return args, options
コード例 #4
0
def readCommand(argv):
    """Processes the command used to run from the command line."""
    from optparse import OptionParser
    parser = OptionParser(USAGE_STRING)

    parser.add_option(
        '-r',
        '--run',
        help=default('automatically runs training and test cycle for 5 times'),
        default=False,
        action='store_true')

    parser.add_option('-c',
                      '--classifier',
                      help=default('The type of classifier'),
                      choices=['perceptron', 'naiveBayes', 'mira'],
                      default='naiveBayes')
    parser.add_option('-d',
                      '--data',
                      help=default('Dataset to use'),
                      choices=['digits', 'faces'],
                      default='digits')
    parser.add_option('-t',
                      '--training',
                      help=default('The ratio of the training set to use'),
                      default=1.0,
                      type="float")
    parser.add_option('-f',
                      '--features',
                      help=default('Whether to use enhanced features'),
                      default=False,
                      action="store_true")
    parser.add_option('-o',
                      '--odds',
                      help=default('Whether to compute odds ratios'),
                      default=False,
                      action="store_true")
    parser.add_option('-1',
                      '--label1',
                      help=default("First label in an odds ratio comparison"),
                      default=0,
                      type="int")
    parser.add_option('-2',
                      '--label2',
                      help=default("Second label in an odds ratio comparison"),
                      default=1,
                      type="int")
    parser.add_option(
        '-k',
        '--smoothing',
        help=default("Smoothing parameter (ignored when using --autotune)"),
        type="float",
        default=2.0)
    parser.add_option(
        '-a',
        '--autotune',
        help=default("Whether to automatically tune hyperparameters"),
        default=False,
        action="store_true")
    parser.add_option('-i',
                      '--iterations',
                      help=default("Maximum iterations to run training"),
                      default=3,
                      type="int")

    options, otherjunk = parser.parse_args(argv)
    if len(otherjunk) != 0:
        raise Exception('Command line input not understood: ' + str(otherjunk))
    args = {}

    # Set up variables according to the command line input.
    print("Doing classification")
    print("--------------------")
    print("data:\t\t" + options.data)
    print("classifier:\t\t" + options.classifier)
    print("using enhanced features?:\t" + str(options.features))

    if options.data == "digits":
        printImage = ImagePrinter(DIGIT_DATUM_WIDTH,
                                  DIGIT_DATUM_HEIGHT).printImage
        if options.features:
            featureFunction = enhancedFeatureExtractorDigit
        else:
            featureFunction = basicFeatureExtractorDigit
    elif options.data == "faces":
        printImage = ImagePrinter(FACE_DATUM_WIDTH,
                                  FACE_DATUM_HEIGHT).printImage
        if options.features:
            featureFunction = enhancedFeatureExtractorFace
        else:
            featureFunction = basicFeatureExtractorFace
    else:
        print("Unknown dataset", options.data)
        print(USAGE_STRING)
        sys.exit(2)

    if options.data == "digits":
        legalLabels = range(10)
    else:
        legalLabels = range(2)

    if options.training <= 0:
        print(
            "Training set size should be a positive integer (you provided: %d)"
            % options.training)
        print(USAGE_STRING)
        sys.exit(2)

    if options.smoothing <= 0:
        print(
            "Please provide a positive number for smoothing (you provided: %f)"
            % options.smoothing)
        print(USAGE_STRING)
        sys.exit(2)

    if options.odds:
        if options.label1 not in legalLabels or options.label2 not in legalLabels:
            print("Didn't provide a legal labels for the odds ratio: (%d,%d)" %
                  (options.label1, options.label2))
            print(USAGE_STRING)
            sys.exit(2)

    if options.classifier == "mira":
        classifier = mira.MiraClassifier(legalLabels, options.iterations)
    elif options.classifier == "naiveBayes":
        classifier = naiveBayes.NaiveBayesClassifier(legalLabels)
        classifier.setSmoothing(options.smoothing)
        if options.autotune:
            print
            "using automatic tuning for naivebayes"
            classifier.automaticTuning = True
        else:
            print("using smoothing parameter k=%f for naivebayes" %
                  options.smoothing)
    elif options.classifier == "perceptron":
        classifier = perceptron.PerceptronClassifier(legalLabels,
                                                     options.iterations)

    elif options.classifier == "knn":
        classifier = knn.KNN(legalLabels)

    else:
        print("Unknown classifier:", options.classifier)
        print(USAGE_STRING)

        sys.exit(2)

    args['classifier'] = classifier
    args['featureFunction'] = featureFunction
    args['printImage'] = printImage

    return args, options
コード例 #5
0
def readCommand( argv ):
	"Processes the command used to run from the command line."
	from optparse import OptionParser
	parser = OptionParser(USAGE_STRING)

	parser.add_option('-c', '--classifier', help=default('The type of classifier'), choices=['perceptron', 'mira'], default='perceptron')
	parser.add_option('-t', '--training', help=default('The size of the training set'), default=1000, type="int")
	parser.add_option('-f', '--features', help=default('Whether to use enhanced features'), default=False, action="store_true")
	parser.add_option('-k', '--smoothing', help=default("Smoothing parameter (ignored when using --autotune)"), type="float", default=2.0)
	parser.add_option('-a', '--autotune', help=default("Whether to automatically tune hyperparameters"), default=False, action="store_true")
	parser.add_option('-i', '--iterations', help=default("Maximum iterations to run training"), default=3, type="int")
	parser.add_option('-s', '--test', help=default("Amount of test data to use"), default=TEST_SET_SIZE, type="int")
	parser.add_option('-v', '--validate', help=default("Whether to validate when training (for graphs)"), default=False, action="store_true")

	options, otherjunk = parser.parse_args(argv)
	if len(otherjunk) != 0: raise Exception('Command line input not understood: ' + str(otherjunk))
	args = {}

	# Set up variables according to the command line input.
	print "Doing classification"
	print "--------------------"
	print "classifier:\t\t" + options.classifier
	print "using enhanced features?:\t" + str(options.features)
	print "training set size:\t" + str(options.training)

	printImage = ImagePrinter(DIGIT_DATUM_WIDTH, DIGIT_DATUM_HEIGHT).printImage
	if (options.features):
		featureFunction = enhancedFeatureExtractorDigit
	else:
		featureFunction = basicFeatureExtractorDigit
	
	legalLabels = range(10)

	if options.training <= 0:
		print "Training set size should be a positive integer (you provided: %d)" % options.training
		print USAGE_STRING
		sys.exit(2)

	if options.smoothing <= 0:
		print "Please provide a positive number for smoothing (you provided: %f)" % options.smoothing
		print USAGE_STRING
		sys.exit(2)

	if(options.classifier == "perceptron"):
	   classifier = perceptron.PerceptronClassifier(legalLabels,options.iterations)
	elif(options.classifier == "mira"):
		classifier = mira.MiraClassifier(legalLabels, options.iterations)
		if (options.autotune):
			print "using automatic tuning for MIRA"
			classifier.automaticTuning = True
		else:
			print "using default C=0.001 for MIRA"
	else:
		print "Unknown classifier:", options.classifier
		print USAGE_STRING
		sys.exit(2)


	args['classifier'] = classifier
	args['featureFunction'] = featureFunction
	args['printImage'] = printImage

	return args, options
コード例 #6
0
def readCommand( argv ):
  """
  Processes the command used to run from the command line.
  """
  import getopt

  # Set default options
  options = {'classifier': 'mostfrequent', 
             'data': 'digits', 
             'enhancedFeatures': False,
             'train': 100,
             'odds': False,
             'class1': 1,
             'class2': 0,
             'smoothing': 1,
             'automaticTuning' : False,
             'maxIterations': 3}
             
  args = {} # This dictionary will hold the objects used by the main method
  
  # Read input from the command line
  commands = ['help', 
              'classifer=', 
              'data=',
              'train=', 
              'enhancedFeatures', 
              'odds',
              'class1=',
              'class2=',
              'smoothing=',
              'automaticTuning'
              'maxIterations=']
  try:
    opts = getopt.getopt( argv, "hc:d:t:fo1:2:k:ai:", commands )
  except getopt.GetoptError:
    print USAGE_STRING
    sys.exit( 2 )
    
  for option, value in opts[0]:
    if option in ['--help', '-h']:
      print USAGE_STRING
      sys.exit( 0 )
    if option in ['--classifier', '-c']:
      options['classifier'] = value
    if option in ['--data', '-d']:
      options['data'] = value
    if option in ['--train', '-t']:
      options['train'] = int(value)
    if option in ['--enhancedFeatures', '-f']:
      options['enhancedFeatures'] = True
    if option in ['--odds', '-o']:
      options['odds'] = True
    if option in ['--class1', '-1']:
      options['class1'] = int(value)
    if option in ['--class2', '-2']:
      options['class2'] = int(value)
    if option in ['--smoothing', '-k']:
      options['smoothing'] = float( value )
    if option in ['--automaticTuning', '-a']:
      options['automaticTuning'] = True
    if option in ['--maxIterations', '-i']:
      options['maxIterations'] = int(value)
    
  # Set up variables according to the command line input.
  print "Doing classification"
  print "--------------------"
  print "data:\t\t" + options['data']
  print "classifier:\t\t" + options['classifier']
  print "using enhanced features?:\t" + str(options['enhancedFeatures'])
  print "training set size:\t" + str(options['train'])
  if(options['data']=="digits"):
    printImage = ImagePrinter(DIGIT_DATUM_WIDTH, DIGIT_DATUM_HEIGHT).printImage
    if (options['enhancedFeatures']):
      featureFunction = enhancedFeatureExtractorDigit
    else:
      featureFunction = basicFeatureExtractorDigit
  elif(options['data']=="faces"):
    printImage = ImagePrinter(FACE_DATUM_WIDTH, FACE_DATUM_HEIGHT).printImage
    if (options['enhancedFeatures']):
      featureFunction = enhancedFeatureExtractorFace
    else:
      featureFunction = basicFeatureExtractorFace      
  else:
    print "Unknown dataset", options['data']
    print USAGE_STRING
    sys.exit(2)
    
  if(options['data']=="digits"):
    legalLabels = range(10)
  else:
    legalLabels = range(2)
    
  if options['train'] <= 0:
    print "Training set size should be a positive integer (you provided: %d)" % options['train']
    print USAGE_STRING
    sys.exit(2)
    
  if options['smoothing'] <= 0:
    print "Please provide a positive number for smoothing (you provided: %f)" % options['smoothing']
    print USAGE_STRING
    sys.exit(2)
    
  if options['odds']:
    for className in ['class1','class2']:
      if options[className] not in legalLabels:
        print "Didn't provide a legal labels for the odds ratio for %s" % className
        print USAGE_STRING
        sys.exit(2)

  if(options['classifier'] == "mostfrequent"):
    classifier = mostFrequent.MostFrequentClassifier(legalLabels)
  elif(options['classifier'] == "naivebayes"):
    classifier = naiveBayes.NaiveBayesClassifier(legalLabels)
    classifier.setSmoothing(options['smoothing'])
    if (options['automaticTuning']):
        print "using automatic tuning for naivebayes"
        classifier.automaticTuning = True
    else:
        print "using smoothing parameter k=%f for naivebayes" %  options['smoothing']
  elif(options['classifier'] == "perceptron"):
    classifier = perceptron.PerceptronClassifier(legalLabels,options['maxIterations'])
  elif(options['classifier'] == "mira"):
    classifier = mira.MiraClassifier(legalLabels, options['maxIterations'])
    if (options['automaticTuning']):
        print "using automatic tuning for MIRA"
        classifier.automaticTuning = True
    else:
        print "using default C=0.001 for MIRA"
  else:
    print "Unknown classifier:", options['classifier']
    print USAGE_STRING
    sys.exit(2)

  args['classifier'] = classifier
  args['featureFunction'] = featureFunction
  args['printImage'] = printImage
  
  return args, options
コード例 #7
0
    elif(options.classifier == "naiveBayes" or options.classifier == "nb"):
        classifier = naiveBayes.NaiveBayesClassifier(legalLabels)
        classifier.setSmoothing(options.smoothing)
        if (options.autotune):
            print "using automatic tuning for naivebayes"
            classifier.automaticTuning = True
        else:
            print "using smoothing parameter k=%f for naivebayes" %  options.smoothing
elif(options.classifier == "perceptron"):
    if options.data != 'pacman':
        classifier = perceptron.PerceptronClassifier(legalLabels,options.iterations)
        else:
            classifier = perceptron_pacman.PerceptronClassifierPacman(legalLabels,options.iterations)
elif(options.classifier == "mira"):
    if options.data != 'pacman':
        classifier = mira.MiraClassifier(legalLabels, options.iterations)
        if (options.autotune):
            print "using automatic tuning for MIRA"
            classifier.automaticTuning = True
    else:
        print "using default C=0.001 for MIRA"
elif(options.classifier == 'minicontest'):
    import minicontest
        classifier = minicontest.contestClassifier(legalLabels)
    else:
        print "Unknown classifier:", options.classifier
        print USAGE_STRING
        
        sys.exit(2)

args['agentToClone'] = options.agentToClone