コード例 #1
0
ファイル: viscous.py プロジェクト: dreamer2368/mirgecom
def viscous_stress_tensor(state, grad_cv):
    r"""Compute the viscous stress tensor.

    The viscous stress tensor $\tau$ is defined by:

    .. math::

        \mathbf{\tau} = \mu\left(\nabla{\mathbf{v}}
        +\left(\nabla{\mathbf{v}}\right)^T\right) + (\mu_B - \frac{2\mu}{3})
        \left(\nabla\cdot\mathbf{v}\right)

    Parameters
    ----------
    state: :class:`~mirgecom.gas_model.FluidState`

        Full conserved and thermal state of fluid

    grad_cv: :class:`~mirgecom.fluid.ConservedVars`

        Gradient of the fluid state

    Returns
    -------
    numpy.ndarray

        The viscous stress tensor
    """
    return _compute_viscous_stress_tensor(dim=state.dim,
                                          mu=state.viscosity,
                                          mu_b=state.bulk_viscosity,
                                          grad_v=velocity_gradient(
                                              state.cv, grad_cv))
コード例 #2
0
ファイル: test_fluid.py プロジェクト: MTCam/mirgecom
def test_velocity_gradient_eoc(actx_factory, dim):
    """Test that the velocity gradient converges at the proper rate."""
    from mirgecom.fluid import velocity_gradient
    actx = actx_factory()

    order = 3

    from pytools.convergence import EOCRecorder
    eoc = EOCRecorder()

    nel_1d_0 = 4
    for hn1 in [1, 2, 3, 4]:

        nel_1d = hn1 * nel_1d_0
        h = 1/nel_1d

        from meshmode.mesh.generation import generate_regular_rect_mesh
        mesh = generate_regular_rect_mesh(
            a=(1.0,) * dim, b=(2.0,) * dim, nelements_per_axis=(nel_1d,) * dim
        )

        discr = EagerDGDiscretization(actx, mesh, order=order)
        nodes = thaw(actx, discr.nodes())
        zeros = discr.zeros(actx)
        energy = zeros + 2.5

        mass = nodes[dim-1]*nodes[dim-1]
        velocity = make_obj_array([actx.np.cos(nodes[i]) for i in range(dim)])
        mom = mass*velocity

        q = join_conserved(dim, mass=mass, energy=energy, momentum=mom)
        cv = split_conserved(dim, q)

        grad_q = obj_array_vectorize(discr.grad, q)
        grad_cv = split_conserved(dim, grad_q)

        grad_v = velocity_gradient(discr, cv, grad_cv)

        def exact_grad_row(xdata, gdim, dim):
            exact_grad_row = make_obj_array([zeros for _ in range(dim)])
            exact_grad_row[gdim] = -actx.np.sin(xdata)
            return exact_grad_row

        comp_err = make_obj_array([
            discr.norm(grad_v[i] - exact_grad_row(nodes[i], i, dim), np.inf)
            for i in range(dim)])
        err_max = comp_err.max()
        eoc.add_data_point(h, err_max)

    logger.info(eoc)
    assert (
        eoc.order_estimate() >= order - 0.5
        or eoc.max_error() < 1e-9
    )
コード例 #3
0
def test_velocity_gradient_structure(actx_factory):
    """Test gradv data structure, verifying usability with other helper routines."""
    from mirgecom.fluid import velocity_gradient
    actx = actx_factory()
    dim = 3
    nel_1d = 4

    from meshmode.mesh.generation import generate_regular_rect_mesh

    mesh = generate_regular_rect_mesh(
        a=(1.0,) * dim, b=(2.0,) * dim, nelements_per_axis=(nel_1d,) * dim
    )

    order = 1

    discr = EagerDGDiscretization(actx, mesh, order=order)
    nodes = thaw(actx, discr.nodes())
    zeros = discr.zeros(actx)
    ones = zeros + 1.0

    mass = 2*ones

    energy = zeros + 2.5
    velocity_x = nodes[0] + 2*nodes[1] + 3*nodes[2]
    velocity_y = 4*nodes[0] + 5*nodes[1] + 6*nodes[2]
    velocity_z = 7*nodes[0] + 8*nodes[1] + 9*nodes[2]
    velocity = make_obj_array([velocity_x, velocity_y, velocity_z])

    mom = mass * velocity

    cv = make_conserved(dim, mass=mass, energy=energy, momentum=mom)
    from grudge.op import local_grad
    grad_cv = local_grad(discr, cv)
    grad_v = velocity_gradient(cv, grad_cv)

    tol = 1e-11
    exp_result = [[1, 2, 3], [4, 5, 6], [7, 8, 9]]
    exp_trans = [[1, 4, 7], [2, 5, 8], [3, 6, 9]]
    exp_trace = 15
    assert grad_v.shape == (dim, dim)
    from meshmode.dof_array import DOFArray
    assert type(grad_v[0, 0]) == DOFArray

    def inf_norm(x):
        return actx.to_numpy(discr.norm(x, np.inf))

    assert inf_norm(grad_v - exp_result) < tol
    assert inf_norm(grad_v.T - exp_trans) < tol
    assert inf_norm(np.trace(grad_v) - exp_trace) < tol
コード例 #4
0
ファイル: test_fluid.py プロジェクト: thomasgibson/mirgecom
def test_velocity_gradient_sanity(actx_factory, dim, mass_exp, vel_fac):
    """Test that the grad(v) returns {0, I} for v={constant, r_xyz}."""
    from mirgecom.fluid import velocity_gradient
    actx = actx_factory()

    nel_1d = 16

    from meshmode.mesh.generation import generate_regular_rect_mesh

    mesh = generate_regular_rect_mesh(a=(1.0, ) * dim,
                                      b=(2.0, ) * dim,
                                      nelements_per_axis=(nel_1d, ) * dim)

    order = 3

    discr = EagerDGDiscretization(actx, mesh, order=order)
    nodes = thaw(actx, discr.nodes())
    zeros = discr.zeros(actx)
    ones = zeros + 1.0

    mass = 1 * ones
    for i in range(mass_exp):
        mass *= (mass + i)

    energy = zeros + 2.5
    velocity = vel_fac * nodes
    mom = mass * velocity

    cv = make_conserved(dim, mass=mass, energy=energy, momentum=mom)
    from grudge.op import local_grad
    grad_cv = make_conserved(dim, q=local_grad(discr, cv.join()))

    grad_v = velocity_gradient(discr, cv, grad_cv)

    tol = 1e-11
    exp_result = vel_fac * np.eye(dim) * ones
    grad_v_err = [
        discr.norm(grad_v[i] - exp_result[i], np.inf) for i in range(dim)
    ]

    assert max(grad_v_err) < tol
コード例 #5
0
def viscous_stress_tensor(discr, eos, cv, grad_cv):
    r"""Compute the viscous stress tensor.

    The viscous stress tensor $\tau$ is defined by:

    .. math::

        \mathbf{\tau} = \mu\left(\nabla{\mathbf{v}}
        +\left(\nabla{\mathbf{v}}\right)^T\right) + (\mu_B - \frac{2\mu}{3})
        \left(\nabla\cdot\mathbf{v}\right)

    Parameters
    ----------
    discr: :class:`grudge.eager.EagerDGDiscretization`
        The discretization to use
    eos: :class:`~mirgecom.eos.GasEOS`
        A gas equation of state with a non-empty
        :class:`~mirgecom.transport.TransportModel`.
    cv: :class:`~mirgecom.fluid.ConservedVars`
        Fluid state
    grad_cv: :class:`~mirgecom.fluid.ConservedVars`
        Gradient of the fluid state

    Returns
    -------
    numpy.ndarray
        The viscous stress tensor
    """
    dim = cv.dim
    transport = eos.transport_model()

    mu_b = transport.bulk_viscosity(eos, cv)
    mu = transport.viscosity(eos, cv)

    grad_v = velocity_gradient(discr, cv, grad_cv)
    div_v = np.trace(grad_v)

    return mu * (grad_v + grad_v.T) + (mu_b - 2 * mu / 3) * div_v * np.eye(dim)