def main(ctx_factory=cl.create_some_context, use_logmgr=True, use_leap=False, use_overintegration=False, use_profiling=False, casename=None, rst_filename=None, actx_class=PyOpenCLArrayContext, log_dependent=True): """Drive example.""" cl_ctx = ctx_factory() if casename is None: casename = "mirgecom" from mpi4py import MPI comm = MPI.COMM_WORLD rank = comm.Get_rank() nproc = comm.Get_size() from mirgecom.simutil import global_reduce as _global_reduce global_reduce = partial(_global_reduce, comm=comm) logmgr = initialize_logmgr(use_logmgr, filename=f"{casename}.sqlite", mode="wu", mpi_comm=comm) if use_profiling: queue = cl.CommandQueue( cl_ctx, properties=cl.command_queue_properties.PROFILING_ENABLE) else: queue = cl.CommandQueue(cl_ctx) actx = actx_class(queue, allocator=cl_tools.MemoryPool( cl_tools.ImmediateAllocator(queue))) # Some discretization parameters dim = 2 nel_1d = 8 order = 1 # {{{ Time stepping control # This example runs only 3 steps by default (to keep CI ~short) # With the mixture defined below, equilibrium is achieved at ~40ms # To run to equilibrium, set t_final >= 40ms. # Time stepper selection if use_leap: from leap.rk import RK4MethodBuilder timestepper = RK4MethodBuilder("state") else: timestepper = rk4_step # Time loop control parameters current_step = 0 t_final = 1e-8 current_cfl = 1.0 current_dt = 1e-9 current_t = 0 constant_cfl = False # i.o frequencies nstatus = 1 nviz = 5 nhealth = 1 nrestart = 5 # }}} Time stepping control debug = False rst_path = "restart_data/" rst_pattern = (rst_path + "{cname}-{step:04d}-{rank:04d}.pkl") if rst_filename: # read the grid from restart data rst_filename = f"{rst_filename}-{rank:04d}.pkl" from mirgecom.restart import read_restart_data restart_data = read_restart_data(actx, rst_filename) local_mesh = restart_data["local_mesh"] local_nelements = local_mesh.nelements global_nelements = restart_data["global_nelements"] assert restart_data["num_parts"] == nproc rst_time = restart_data["t"] rst_step = restart_data["step"] rst_order = restart_data["order"] else: # generate the grid from scratch from meshmode.mesh.generation import generate_regular_rect_mesh box_ll = -0.005 box_ur = 0.005 generate_mesh = partial(generate_regular_rect_mesh, a=(box_ll, ) * dim, b=(box_ur, ) * dim, nelements_per_axis=(nel_1d, ) * dim) local_mesh, global_nelements = generate_and_distribute_mesh( comm, generate_mesh) local_nelements = local_mesh.nelements from grudge.dof_desc import DISCR_TAG_BASE, DISCR_TAG_QUAD from meshmode.discretization.poly_element import \ default_simplex_group_factory, QuadratureSimplexGroupFactory discr = EagerDGDiscretization( actx, local_mesh, discr_tag_to_group_factory={ DISCR_TAG_BASE: default_simplex_group_factory(base_dim=local_mesh.dim, order=order), DISCR_TAG_QUAD: QuadratureSimplexGroupFactory(2 * order + 1) }, mpi_communicator=comm) nodes = thaw(discr.nodes(), actx) ones = discr.zeros(actx) + 1.0 if use_overintegration: quadrature_tag = DISCR_TAG_QUAD else: quadrature_tag = None ones = discr.zeros(actx) + 1.0 vis_timer = None if logmgr: logmgr_add_cl_device_info(logmgr, queue) logmgr_add_device_memory_usage(logmgr, queue) vis_timer = IntervalTimer("t_vis", "Time spent visualizing") logmgr.add_quantity(vis_timer) logmgr.add_watches([("step.max", "step = {value}, "), ("t_sim.max", "sim time: {value:1.6e} s\n"), ("t_step.max", "------- step walltime: {value:6g} s, "), ("t_log.max", "log walltime: {value:6g} s")]) if log_dependent: logmgr_add_many_discretization_quantities( logmgr, discr, dim, extract_vars_for_logging, units_for_logging) logmgr.add_watches([ ("min_pressure", "\n------- P (min, max) (Pa) = ({value:1.9e}, "), ("max_pressure", "{value:1.9e})\n"), ("min_temperature", "------- T (min, max) (K) = ({value:7g}, "), ("max_temperature", "{value:7g})\n") ]) # {{{ Set up initial state using Cantera # Use Cantera for initialization # -- Pick up a CTI for the thermochemistry config # --- Note: Users may add their own CTI file by dropping it into # --- mirgecom/mechanisms alongside the other CTI files. from mirgecom.mechanisms import get_mechanism_cti mech_cti = get_mechanism_cti("uiuc") cantera_soln = cantera.Solution(phase_id="gas", source=mech_cti) nspecies = cantera_soln.n_species # Initial temperature, pressure, and mixutre mole fractions are needed to # set up the initial state in Cantera. temperature_seed = 1500.0 # Initial temperature hot enough to burn # Parameters for calculating the amounts of fuel, oxidizer, and inert species equiv_ratio = 1.0 ox_di_ratio = 0.21 stoich_ratio = 3.0 # Grab the array indices for the specific species, ethylene, oxygen, and nitrogen i_fu = cantera_soln.species_index("C2H4") i_ox = cantera_soln.species_index("O2") i_di = cantera_soln.species_index("N2") x = np.zeros(nspecies) # Set the species mole fractions according to our desired fuel/air mixture x[i_fu] = (ox_di_ratio * equiv_ratio) / (stoich_ratio + ox_di_ratio * equiv_ratio) x[i_ox] = stoich_ratio * x[i_fu] / equiv_ratio x[i_di] = (1.0 - ox_di_ratio) * x[i_ox] / ox_di_ratio # Uncomment next line to make pylint fail when it can't find cantera.one_atm one_atm = cantera.one_atm # pylint: disable=no-member # one_atm = 101325.0 # Let the user know about how Cantera is being initilized print(f"Input state (T,P,X) = ({temperature_seed}, {one_atm}, {x}") # Set Cantera internal gas temperature, pressure, and mole fractios cantera_soln.TPX = temperature_seed, one_atm, x # Pull temperature, total density, mass fractions, and pressure from Cantera # We need total density, and mass fractions to initialize the fluid/gas state. can_t, can_rho, can_y = cantera_soln.TDY can_p = cantera_soln.P # *can_t*, *can_p* should not differ (significantly) from user's initial data, # but we want to ensure that we use exactly the same starting point as Cantera, # so we use Cantera's version of these data. # }}} # {{{ Create Pyrometheus thermochemistry object & EOS # Create a Pyrometheus EOS with the Cantera soln. Pyrometheus uses Cantera and # generates a set of methods to calculate chemothermomechanical properties and # states for this particular mechanism. from mirgecom.thermochemistry import make_pyrometheus_mechanism_class pyro_mechanism = make_pyrometheus_mechanism_class(cantera_soln)(actx.np) eos = PyrometheusMixture(pyro_mechanism, temperature_guess=temperature_seed) gas_model = GasModel(eos=eos) from pytools.obj_array import make_obj_array def get_temperature_update(cv, temperature): y = cv.species_mass_fractions e = gas_model.eos.internal_energy(cv) / cv.mass return pyro_mechanism.get_temperature_update_energy(e, temperature, y) from mirgecom.gas_model import make_fluid_state def get_fluid_state(cv, tseed): return make_fluid_state(cv=cv, gas_model=gas_model, temperature_seed=tseed) compute_temperature_update = actx.compile(get_temperature_update) construct_fluid_state = actx.compile(get_fluid_state) # }}} # {{{ MIRGE-Com state initialization # Initialize the fluid/gas state with Cantera-consistent data: # (density, pressure, temperature, mass_fractions) print(f"Cantera state (rho,T,P,Y) = ({can_rho}, {can_t}, {can_p}, {can_y}") velocity = np.zeros(shape=(dim, )) initializer = MixtureInitializer(dim=dim, nspecies=nspecies, pressure=can_p, temperature=can_t, massfractions=can_y, velocity=velocity) my_boundary = AdiabaticSlipBoundary() boundaries = {BTAG_ALL: my_boundary} if rst_filename: current_step = rst_step current_t = rst_time if logmgr: from mirgecom.logging_quantities import logmgr_set_time logmgr_set_time(logmgr, current_step, current_t) if order == rst_order: current_cv = restart_data["cv"] temperature_seed = restart_data["temperature_seed"] else: rst_cv = restart_data["cv"] old_discr = EagerDGDiscretization(actx, local_mesh, order=rst_order, mpi_communicator=comm) from meshmode.discretization.connection import make_same_mesh_connection connection = make_same_mesh_connection( actx, discr.discr_from_dd("vol"), old_discr.discr_from_dd("vol")) current_cv = connection(rst_cv) temperature_seed = connection(restart_data["temperature_seed"]) else: # Set the current state from time 0 current_cv = initializer(eos=gas_model.eos, x_vec=nodes) temperature_seed = temperature_seed * ones # The temperature_seed going into this function is: # - At time 0: the initial temperature input data (maybe from Cantera) # - On restart: the restarted temperature seed from restart file (saving # the *seed* allows restarts to be deterministic current_fluid_state = construct_fluid_state(current_cv, temperature_seed) current_dv = current_fluid_state.dv temperature_seed = current_dv.temperature # Inspection at physics debugging time if debug: print("Initial MIRGE-Com state:") print(f"Initial DV pressure: {current_fluid_state.pressure}") print(f"Initial DV temperature: {current_fluid_state.temperature}") # }}} visualizer = make_visualizer(discr) initname = initializer.__class__.__name__ eosname = gas_model.eos.__class__.__name__ init_message = make_init_message(dim=dim, order=order, nelements=local_nelements, global_nelements=global_nelements, dt=current_dt, t_final=t_final, nstatus=nstatus, nviz=nviz, cfl=current_cfl, constant_cfl=constant_cfl, initname=initname, eosname=eosname, casename=casename) # Cantera equilibrate calculates the expected end state @ chemical equilibrium # i.e. the expected state after all reactions cantera_soln.equilibrate("UV") eq_temperature, eq_density, eq_mass_fractions = cantera_soln.TDY eq_pressure = cantera_soln.P # Report the expected final state to the user if rank == 0: logger.info(init_message) logger.info(f"Expected equilibrium state:" f" {eq_pressure=}, {eq_temperature=}," f" {eq_density=}, {eq_mass_fractions=}") def my_write_status(dt, cfl, dv=None): status_msg = f"------ {dt=}" if constant_cfl else f"----- {cfl=}" if ((dv is not None) and (not log_dependent)): temp = dv.temperature press = dv.pressure from grudge.op import nodal_min_loc, nodal_max_loc tmin = allsync(actx.to_numpy(nodal_min_loc(discr, "vol", temp)), comm=comm, op=MPI.MIN) tmax = allsync(actx.to_numpy(nodal_max_loc(discr, "vol", temp)), comm=comm, op=MPI.MAX) pmin = allsync(actx.to_numpy(nodal_min_loc(discr, "vol", press)), comm=comm, op=MPI.MIN) pmax = allsync(actx.to_numpy(nodal_max_loc(discr, "vol", press)), comm=comm, op=MPI.MAX) dv_status_msg = f"\nP({pmin}, {pmax}), T({tmin}, {tmax})" status_msg = status_msg + dv_status_msg if rank == 0: logger.info(status_msg) def my_write_viz(step, t, dt, state, ts_field, dv, production_rates, cfl): viz_fields = [("cv", state), ("dv", dv), ("production_rates", production_rates), ("dt" if constant_cfl else "cfl", ts_field)] write_visfile(discr, viz_fields, visualizer, vizname=casename, step=step, t=t, overwrite=True, vis_timer=vis_timer) def my_write_restart(step, t, state, temperature_seed): rst_fname = rst_pattern.format(cname=casename, step=step, rank=rank) if rst_fname == rst_filename: if rank == 0: logger.info("Skipping overwrite of restart file.") else: rst_data = { "local_mesh": local_mesh, "cv": state.cv, "temperature_seed": temperature_seed, "t": t, "step": step, "order": order, "global_nelements": global_nelements, "num_parts": nproc } from mirgecom.restart import write_restart_file write_restart_file(actx, rst_data, rst_fname, comm) def my_health_check(cv, dv): import grudge.op as op health_error = False pressure = dv.pressure temperature = dv.temperature from mirgecom.simutil import check_naninf_local, check_range_local if check_naninf_local(discr, "vol", pressure): health_error = True logger.info(f"{rank=}: Invalid pressure data found.") if check_range_local(discr, "vol", pressure, 1e5, 2.6e5): health_error = True logger.info(f"{rank=}: Pressure range violation.") if check_naninf_local(discr, "vol", temperature): health_error = True logger.info(f"{rank=}: Invalid temperature data found.") if check_range_local(discr, "vol", temperature, 1.498e3, 1.6e3): health_error = True logger.info(f"{rank=}: Temperature range violation.") # This check is the temperature convergence check # The current *temperature* is what Pyrometheus gets # after a fixed number of Newton iterations, *n_iter*. # Calling `compute_temperature` here with *temperature* # input as the guess returns the calculated gas temperature after # yet another *n_iter*. # The difference between those two temperatures is the # temperature residual, which can be used as an indicator of # convergence in Pyrometheus `get_temperature`. # Note: The local max jig below works around a very long compile # in lazy mode. temp_resid = compute_temperature_update(cv, temperature) / temperature temp_err = (actx.to_numpy(op.nodal_max_loc(discr, "vol", temp_resid))) if temp_err > 1e-8: health_error = True logger.info( f"{rank=}: Temperature is not converged {temp_resid=}.") return health_error from mirgecom.inviscid import get_inviscid_timestep def get_dt(state): return get_inviscid_timestep(discr, state=state) compute_dt = actx.compile(get_dt) from mirgecom.inviscid import get_inviscid_cfl def get_cfl(state, dt): return get_inviscid_cfl(discr, dt=dt, state=state) compute_cfl = actx.compile(get_cfl) def get_production_rates(cv, temperature): return eos.get_production_rates(cv, temperature) compute_production_rates = actx.compile(get_production_rates) def my_get_timestep(t, dt, state): # richer interface to calculate {dt,cfl} returns node-local estimates t_remaining = max(0, t_final - t) if constant_cfl: ts_field = current_cfl * compute_dt(state) from grudge.op import nodal_min_loc dt = allsync(actx.to_numpy(nodal_min_loc(discr, "vol", ts_field)), comm=comm, op=MPI.MIN) cfl = current_cfl else: ts_field = compute_cfl(state, current_dt) from grudge.op import nodal_max_loc cfl = allsync(actx.to_numpy(nodal_max_loc(discr, "vol", ts_field)), comm=comm, op=MPI.MAX) return ts_field, cfl, min(t_remaining, dt) def my_pre_step(step, t, dt, state): cv, tseed = state fluid_state = construct_fluid_state(cv, tseed) dv = fluid_state.dv try: if logmgr: logmgr.tick_before() from mirgecom.simutil import check_step do_viz = check_step(step=step, interval=nviz) do_restart = check_step(step=step, interval=nrestart) do_health = check_step(step=step, interval=nhealth) do_status = check_step(step=step, interval=nstatus) if do_health: health_errors = global_reduce(my_health_check(cv, dv), op="lor") if health_errors: if rank == 0: logger.info("Fluid solution failed health check.") raise MyRuntimeError("Failed simulation health check.") ts_field, cfl, dt = my_get_timestep(t=t, dt=dt, state=fluid_state) if do_status: my_write_status(dt=dt, cfl=cfl, dv=dv) if do_restart: my_write_restart(step=step, t=t, state=fluid_state, temperature_seed=tseed) if do_viz: production_rates = compute_production_rates( fluid_state.cv, fluid_state.temperature) my_write_viz(step=step, t=t, dt=dt, state=cv, dv=dv, production_rates=production_rates, ts_field=ts_field, cfl=cfl) except MyRuntimeError: if rank == 0: logger.info("Errors detected; attempting graceful exit.") # my_write_viz(step=step, t=t, dt=dt, state=cv) # my_write_restart(step=step, t=t, state=fluid_state) raise return state, dt def my_post_step(step, t, dt, state): cv, tseed = state fluid_state = construct_fluid_state(cv, tseed) # Logmgr needs to know about EOS, dt, dim? # imo this is a design/scope flaw if logmgr: set_dt(logmgr, dt) set_sim_state(logmgr, dim, cv, gas_model.eos) logmgr.tick_after() return make_obj_array([cv, fluid_state.temperature]), dt def my_rhs(t, state): cv, tseed = state from mirgecom.gas_model import make_fluid_state fluid_state = make_fluid_state(cv=cv, gas_model=gas_model, temperature_seed=tseed) return make_obj_array([ euler_operator(discr, state=fluid_state, time=t, boundaries=boundaries, gas_model=gas_model, quadrature_tag=quadrature_tag) + eos.get_species_source_terms(cv, fluid_state.temperature), 0 * tseed ]) current_dt = get_sim_timestep(discr, current_fluid_state, current_t, current_dt, current_cfl, t_final, constant_cfl) current_step, current_t, current_state = \ advance_state(rhs=my_rhs, timestepper=timestepper, pre_step_callback=my_pre_step, post_step_callback=my_post_step, dt=current_dt, state=make_obj_array([current_cv, temperature_seed]), t=current_t, t_final=t_final) # Dump the final data if rank == 0: logger.info("Checkpointing final state ...") final_cv, tseed = current_state final_fluid_state = construct_fluid_state(final_cv, tseed) final_dv = final_fluid_state.dv final_dm = compute_production_rates(final_cv, final_dv.temperature) ts_field, cfl, dt = my_get_timestep(t=current_t, dt=current_dt, state=final_fluid_state) my_write_viz(step=current_step, t=current_t, dt=dt, state=final_cv, dv=final_dv, production_rates=final_dm, ts_field=ts_field, cfl=cfl) my_write_status(dt=dt, cfl=cfl, dv=final_dv) my_write_restart(step=current_step, t=current_t, state=final_fluid_state, temperature_seed=tseed) if logmgr: logmgr.close() elif use_profiling: print(actx.tabulate_profiling_data()) finish_tol = 1e-16 assert np.abs(current_t - t_final) < finish_tol
def main(ctx_factory=cl.create_some_context, use_logmgr=True, use_leap=False, use_profiling=False, casename=None, rst_filename=None, actx_class=PyOpenCLArrayContext, log_dependent=True): """Drive example.""" cl_ctx = ctx_factory() if casename is None: casename = "mirgecom" from mpi4py import MPI comm = MPI.COMM_WORLD rank = comm.Get_rank() nparts = comm.Get_size() from mirgecom.simutil import global_reduce as _global_reduce global_reduce = partial(_global_reduce, comm=comm) logmgr = initialize_logmgr(use_logmgr, filename=f"{casename}.sqlite", mode="wu", mpi_comm=comm) if use_profiling: queue = cl.CommandQueue( cl_ctx, properties=cl.command_queue_properties.PROFILING_ENABLE) else: queue = cl.CommandQueue(cl_ctx) actx = actx_class( queue, allocator=cl_tools.MemoryPool(cl_tools.ImmediateAllocator(queue))) # timestepping control if use_leap: from leap.rk import RK4MethodBuilder timestepper = RK4MethodBuilder("state") else: timestepper = rk4_step t_final = 1e-8 current_cfl = 1.0 current_dt = 1e-9 current_t = 0 current_step = 0 constant_cfl = False # some i/o frequencies nstatus = 1 nhealth = 1 nrestart = 5 nviz = 1 dim = 2 rst_path = "restart_data/" rst_pattern = ( rst_path + "{cname}-{step:04d}-{rank:04d}.pkl" ) if rst_filename: # read the grid from restart data rst_filename = f"{rst_filename}-{rank:04d}.pkl" from mirgecom.restart import read_restart_data restart_data = read_restart_data(actx, rst_filename) local_mesh = restart_data["local_mesh"] local_nelements = local_mesh.nelements global_nelements = restart_data["global_nelements"] assert restart_data["num_parts"] == nparts else: # generate the grid from scratch nel_1d = 16 box_ll = -5.0 box_ur = 5.0 from meshmode.mesh.generation import generate_regular_rect_mesh generate_mesh = partial(generate_regular_rect_mesh, a=(box_ll,)*dim, b=(box_ur,) * dim, nelements_per_axis=(nel_1d,)*dim) local_mesh, global_nelements = generate_and_distribute_mesh(comm, generate_mesh) local_nelements = local_mesh.nelements order = 3 discr = EagerDGDiscretization( actx, local_mesh, order=order, mpi_communicator=comm ) nodes = thaw(discr.nodes(), actx) vis_timer = None if logmgr: logmgr_add_device_name(logmgr, queue) logmgr_add_device_memory_usage(logmgr, queue) vis_timer = IntervalTimer("t_vis", "Time spent visualizing") logmgr.add_quantity(vis_timer) logmgr.add_watches([ ("step.max", "step = {value}, "), ("t_sim.max", "sim time: {value:1.6e} s\n"), ("t_step.max", "------- step walltime: {value:6g} s, "), ("t_log.max", "log walltime: {value:6g} s") ]) if log_dependent: logmgr_add_many_discretization_quantities(logmgr, discr, dim, extract_vars_for_logging, units_for_logging) logmgr.add_watches([ ("min_pressure", "\n------- P (min, max) (Pa) = ({value:1.9e}, "), ("max_pressure", "{value:1.9e})\n"), ("min_temperature", "------- T (min, max) (K) = ({value:7g}, "), ("max_temperature", "{value:7g})\n")]) # Pyrometheus initialization from mirgecom.mechanisms import get_mechanism_cti mech_cti = get_mechanism_cti("uiuc") sol = cantera.Solution(phase_id="gas", source=mech_cti) from mirgecom.thermochemistry import make_pyrometheus_mechanism_class pyrometheus_mechanism = make_pyrometheus_mechanism_class(sol)(actx.np) nspecies = pyrometheus_mechanism.num_species eos = PyrometheusMixture(pyrometheus_mechanism) from mirgecom.gas_model import GasModel, make_fluid_state gas_model = GasModel(eos=eos) from pytools.obj_array import make_obj_array y0s = np.zeros(shape=(nspecies,)) for i in range(nspecies-1): y0s[i] = 1.0 / (10.0 ** (i + 1)) spec_sum = sum([y0s[i] for i in range(nspecies-1)]) y0s[nspecies-1] = 1.0 - spec_sum # Mixture defaults to STP (p, T) = (1atm, 300K) velocity = np.zeros(shape=(dim,)) + 1.0 initializer = MixtureInitializer(dim=dim, nspecies=nspecies, massfractions=y0s, velocity=velocity) def boundary_solution(discr, btag, gas_model, state_minus, **kwargs): actx = state_minus.array_context bnd_discr = discr.discr_from_dd(btag) nodes = thaw(bnd_discr.nodes(), actx) return make_fluid_state(initializer(x_vec=nodes, eos=gas_model.eos, **kwargs), gas_model, temperature_seed=state_minus.temperature) boundaries = { BTAG_ALL: PrescribedFluidBoundary(boundary_state_func=boundary_solution) } if rst_filename: current_t = restart_data["t"] current_step = restart_data["step"] current_cv = restart_data["cv"] tseed = restart_data["temperature_seed"] if logmgr: from mirgecom.logging_quantities import logmgr_set_time logmgr_set_time(logmgr, current_step, current_t) else: # Set the current state from time 0 current_cv = initializer(x_vec=nodes, eos=eos) tseed = 300.0 current_state = make_fluid_state(current_cv, gas_model, temperature_seed=tseed) visualizer = make_visualizer(discr) initname = initializer.__class__.__name__ eosname = eos.__class__.__name__ init_message = make_init_message(dim=dim, order=order, nelements=local_nelements, global_nelements=global_nelements, dt=current_dt, t_final=t_final, nstatus=nstatus, nviz=nviz, cfl=current_cfl, constant_cfl=constant_cfl, initname=initname, eosname=eosname, casename=casename) if rank == 0: logger.info(init_message) def my_write_status(component_errors, dv=None): from mirgecom.simutil import allsync status_msg = ( "------- errors=" + ", ".join("%.3g" % en for en in component_errors)) if ((dv is not None) and (not log_dependent)): temp = dv.temperature press = dv.pressure from grudge.op import nodal_min_loc, nodal_max_loc tmin = allsync(actx.to_numpy(nodal_min_loc(discr, "vol", temp)), comm=comm, op=MPI.MIN) tmax = allsync(actx.to_numpy(nodal_max_loc(discr, "vol", temp)), comm=comm, op=MPI.MAX) pmin = allsync(actx.to_numpy(nodal_min_loc(discr, "vol", press)), comm=comm, op=MPI.MIN) pmax = allsync(actx.to_numpy(nodal_max_loc(discr, "vol", press)), comm=comm, op=MPI.MAX) dv_status_msg = f"\nP({pmin}, {pmax}), T({tmin}, {tmax})" status_msg = status_msg + dv_status_msg if rank == 0: logger.info(status_msg) if rank == 0: logger.info(status_msg) def my_write_viz(step, t, state, dv, exact=None, resid=None): if exact is None: exact = initializer(x_vec=nodes, eos=eos, time=t) if resid is None: resid = state - exact viz_fields = [("cv", state), ("dv", dv)] from mirgecom.simutil import write_visfile write_visfile(discr, viz_fields, visualizer, vizname=casename, step=step, t=t, overwrite=True, vis_timer=vis_timer) def my_write_restart(step, t, state, tseed): rst_fname = rst_pattern.format(cname=casename, step=step, rank=rank) if rst_fname != rst_filename: rst_data = { "local_mesh": local_mesh, "cv": state, "temperature_seed": tseed, "t": t, "step": step, "order": order, "global_nelements": global_nelements, "num_parts": nparts } from mirgecom.restart import write_restart_file write_restart_file(actx, rst_data, rst_fname, comm) def my_health_check(dv, component_errors): health_error = False from mirgecom.simutil import check_naninf_local, check_range_local if check_naninf_local(discr, "vol", dv.pressure) \ or check_range_local(discr, "vol", dv.pressure, 1e5, 1.1e5): health_error = True logger.info(f"{rank=}: Invalid pressure data found.") exittol = .09 if max(component_errors) > exittol: health_error = True if rank == 0: logger.info("Solution diverged from exact soln.") return health_error def my_pre_step(step, t, dt, state): cv, tseed = state fluid_state = make_fluid_state(cv, gas_model, temperature_seed=tseed) dv = fluid_state.dv try: exact = None component_errors = None if logmgr: logmgr.tick_before() from mirgecom.simutil import check_step do_viz = check_step(step=step, interval=nviz) do_restart = check_step(step=step, interval=nrestart) do_health = check_step(step=step, interval=nhealth) do_status = check_step(step=step, interval=nstatus) if do_health: exact = initializer(x_vec=nodes, eos=eos, time=t) from mirgecom.simutil import compare_fluid_solutions component_errors = compare_fluid_solutions(discr, cv, exact) health_errors = global_reduce( my_health_check(dv, component_errors), op="lor") if health_errors: if rank == 0: logger.info("Fluid solution failed health check.") raise MyRuntimeError("Failed simulation health check.") if do_restart: my_write_restart(step=step, t=t, state=cv, tseed=tseed) if do_viz: if exact is None: exact = initializer(x_vec=nodes, eos=eos, time=t) resid = state - exact my_write_viz(step=step, t=t, state=cv, dv=dv, exact=exact, resid=resid) if do_status: if component_errors is None: if exact is None: exact = initializer(x_vec=nodes, eos=eos, time=t) from mirgecom.simutil import compare_fluid_solutions component_errors = compare_fluid_solutions(discr, cv, exact) my_write_status(component_errors, dv=dv) except MyRuntimeError: if rank == 0: logger.info("Errors detected; attempting graceful exit.") my_write_viz(step=step, t=t, state=cv, dv=dv) my_write_restart(step=step, t=t, state=cv, tseed=tseed) raise dt = get_sim_timestep(discr, fluid_state, t, dt, current_cfl, t_final, constant_cfl) return state, dt def my_post_step(step, t, dt, state): cv, tseed = state fluid_state = make_fluid_state(cv, gas_model, temperature_seed=tseed) tseed = fluid_state.temperature # Logmgr needs to know about EOS, dt, dim? # imo this is a design/scope flaw if logmgr: set_dt(logmgr, dt) set_sim_state(logmgr, dim, cv, eos) logmgr.tick_after() return make_obj_array([fluid_state.cv, tseed]), dt def my_rhs(t, state): cv, tseed = state fluid_state = make_fluid_state(cv, gas_model, temperature_seed=tseed) return make_obj_array( [euler_operator(discr, state=fluid_state, time=t, boundaries=boundaries, gas_model=gas_model), 0*tseed]) current_dt = get_sim_timestep(discr, current_state, current_t, current_dt, current_cfl, t_final, constant_cfl) current_step, current_t, advanced_state = \ advance_state(rhs=my_rhs, timestepper=timestepper, pre_step_callback=my_pre_step, post_step_callback=my_post_step, dt=current_dt, state=make_obj_array([current_state.cv, current_state.temperature]), t=current_t, t_final=t_final, eos=eos, dim=dim) # Dump the final data if rank == 0: logger.info("Checkpointing final state ...") current_cv, tseed = advanced_state current_state = make_fluid_state(current_cv, gas_model, temperature_seed=tseed) final_dv = current_state.dv final_exact = initializer(x_vec=nodes, eos=eos, time=current_t) final_resid = current_state.cv - final_exact my_write_viz(step=current_step, t=current_t, state=current_cv, dv=final_dv, exact=final_exact, resid=final_resid) my_write_restart(step=current_step, t=current_t, state=current_state.cv, tseed=tseed) if logmgr: logmgr.close() elif use_profiling: print(actx.tabulate_profiling_data()) finish_tol = 1e-16 assert np.abs(current_t - t_final) < finish_tol
def test_pyrometheus_kinetics(ctx_factory, mechname, rate_tol, y0): """Test known pyrometheus reaction mechanisms. This test reproduces a pyrometheus-native test in the MIRGE context. Tests that the Pyrometheus mechanism code gets the same chemical properties and reaction rates as the corresponding mechanism in Cantera. The reactions are integrated in time and verified against a homogeneous reactor in Cantera. """ cl_ctx = ctx_factory() queue = cl.CommandQueue(cl_ctx) actx = PyOpenCLArrayContext(queue) dim = 1 nel_1d = 4 from meshmode.mesh.generation import generate_regular_rect_mesh mesh = generate_regular_rect_mesh(a=(-0.5, ) * dim, b=(0.5, ) * dim, nelements_per_axis=(nel_1d, ) * dim) order = 4 logger.info(f"Number of elements {mesh.nelements}") discr = EagerDGDiscretization(actx, mesh, order=order) ones = discr.zeros(actx) + 1.0 # Pyrometheus initialization mech_cti = get_mechanism_cti(mechname) cantera_soln = cantera.Solution(phase_id="gas", source=mech_cti) from mirgecom.thermochemistry import make_pyrometheus_mechanism_class # pyro_obj = pyro.get_thermochem_class(cantera_soln)(actx.np) pyro_obj = make_pyrometheus_mechanism_class(cantera_soln)(actx.np) nspecies = pyro_obj.num_species print(f"PrometheusMixture::NumSpecies = {nspecies}") tempin = 1500.0 pressin = cantera.one_atm print(f"Testing (t,P) = ({tempin}, {pressin})") # Homogeneous reactor to get test data equiv_ratio = 1.0 ox_di_ratio = 0.21 stoich_ratio = 0.5 i_fu = cantera_soln.species_index("H2") i_ox = cantera_soln.species_index("O2") i_di = cantera_soln.species_index("N2") x = np.zeros(shape=(nspecies, )) x[i_fu] = (ox_di_ratio * equiv_ratio) / (stoich_ratio + ox_di_ratio * equiv_ratio) x[i_ox] = stoich_ratio * x[i_fu] / equiv_ratio x[i_di] = (1.0 - ox_di_ratio) * x[i_ox] / ox_di_ratio cantera_soln.TPX = tempin, pressin, x # cantera_soln.equilibrate("UV") can_t, can_rho, can_y = cantera_soln.TDY # can_p = cantera_soln.P reactor = cantera.IdealGasConstPressureReactor(cantera_soln) sim = cantera.ReactorNet([reactor]) time = 0.0 for _ in range(50): time += 1.0e-6 sim.advance(time) # Cantera kinetics can_r = reactor.kinetics.net_rates_of_progress can_omega = reactor.kinetics.net_production_rates # Get state from Cantera can_t = reactor.T can_rho = reactor.density can_y = reactor.Y print(f"can_y = {can_y}") tin = can_t * ones rhoin = can_rho * ones yin = can_y * ones # Prometheus kinetics pyro_c = pyro_obj.get_concentrations(rhoin, yin) print(f"pyro_conc = {pyro_c}") pyro_r = pyro_obj.get_net_rates_of_progress(tin, pyro_c) pyro_omega = pyro_obj.get_net_production_rates(rhoin, tin, yin) # Print def inf_norm(x): return actx.to_numpy(discr.norm(x, np.inf)) print(f"can_r = {can_r}") print(f"pyro_r = {pyro_r}") abs_diff = inf_norm(pyro_r - can_r) if abs_diff > 1e-14: min_r = (np.abs(can_r)).min() if min_r > 0: assert inf_norm((pyro_r - can_r) / can_r) < rate_tol else: assert inf_norm(pyro_r) < rate_tol print(f"can_omega = {can_omega}") print(f"pyro_omega = {pyro_omega}") for i, omega in enumerate(can_omega): omin = np.abs(omega).min() if omin > 1e-12: assert inf_norm((pyro_omega[i] - omega) / omega) < 1e-8 else: assert inf_norm(pyro_omega[i]) < 1e-12
def test_pyrometheus_mechanisms(ctx_factory, mechname, rate_tol, y0): """Test known pyrometheus mechanisms. This test reproduces a pyrometheus-native test in the MIRGE context. Tests that the Pyrometheus mechanism code gets the same thermo properties as the corresponding mechanism in Cantera. """ cl_ctx = ctx_factory() queue = cl.CommandQueue(cl_ctx) actx = PyOpenCLArrayContext(queue) dim = 1 nel_1d = 2 from meshmode.mesh.generation import generate_regular_rect_mesh mesh = generate_regular_rect_mesh(a=(-0.5, ) * dim, b=(0.5, ) * dim, nelements_per_axis=(nel_1d, ) * dim) order = 4 logger.info(f"Number of elements {mesh.nelements}") discr = EagerDGDiscretization(actx, mesh, order=order) # Pyrometheus initialization mech_cti = get_mechanism_cti(mechname) sol = cantera.Solution(phase_id="gas", source=mech_cti) from mirgecom.thermochemistry import make_pyrometheus_mechanism_class prometheus_mechanism = make_pyrometheus_mechanism_class(sol)(actx.np) nspecies = prometheus_mechanism.num_species print(f"PyrometheusMixture::NumSpecies = {nspecies}") press0 = 101500.0 temp0 = 300.0 y0s = np.zeros(shape=(nspecies, )) for i in range(nspecies - 1): y0s[i] = y0 / (10.0**(i + 1)) y0s[-1] = 1.0 - np.sum(y0s[:-1]) for fac in range(1, 11): pressin = fac * press0 tempin = fac * temp0 print(f"Testing (t,P) = ({tempin}, {pressin})") cantera_soln = cantera.Solution(phase_id="gas", source=mech_cti) cantera_soln.TPY = tempin, pressin, y0s cantera_soln.equilibrate("UV") can_t, can_rho, can_y = cantera_soln.TDY can_p = cantera_soln.P can_e = cantera_soln.int_energy_mass can_k = cantera_soln.forward_rate_constants can_c = cantera_soln.concentrations # Chemistry functions for testing pyro chem can_r = cantera_soln.net_rates_of_progress can_omega = cantera_soln.net_production_rates ones = discr.zeros(actx) + 1.0 tin = can_t * ones pin = can_p * ones yin = make_obj_array([can_y[i] * ones for i in range(nspecies)]) prom_rho = prometheus_mechanism.get_density(pin, tin, yin) prom_e = prometheus_mechanism.get_mixture_internal_energy_mass( tin, yin) prom_t = prometheus_mechanism.get_temperature(prom_e, tin, yin) prom_p = prometheus_mechanism.get_pressure(prom_rho, tin, yin) prom_c = prometheus_mechanism.get_concentrations(prom_rho, yin) prom_k = prometheus_mechanism.get_fwd_rate_coefficients(prom_t, prom_c) # Pyro chemistry functions prom_r = prometheus_mechanism.get_net_rates_of_progress(prom_t, prom_c) prom_omega = prometheus_mechanism.get_net_production_rates( prom_rho, prom_t, yin) print(f"can(rho, y, p, t, e, k) = ({can_rho}, {can_y}, " f"{can_p}, {can_t}, {can_e}, {can_k})") print(f"prom(rho, y, p, t, e, k) = ({prom_rho}, {y0s}, " f"{prom_p}, {prom_t}, {prom_e}, {prom_k})") # For pyro chem testing print(f"can_r = {can_r}") print(f"prom_r = {prom_r}") print(f"can_omega = {can_omega}") print(f"prom_omega = {prom_omega}") def inf_norm(x): return actx.to_numpy(discr.norm(x, np.inf)) assert inf_norm((prom_c - can_c) / can_c) < 1e-14 assert inf_norm((prom_t - can_t) / can_t) < 1e-14 assert inf_norm((prom_rho - can_rho) / can_rho) < 1e-14 assert inf_norm((prom_p - can_p) / can_p) < 1e-14 assert inf_norm((prom_e - can_e) / can_e) < 1e-6 assert inf_norm((prom_k - can_k) / can_k) < 1e-10 # Pyro chem test comparisons for i, rate in enumerate(can_r): assert inf_norm(prom_r[i] - rate) < rate_tol for i, rate in enumerate(can_omega): assert inf_norm(prom_omega[i] - rate) < rate_tol
def test_pyrometheus_eos(ctx_factory, mechname, dim, y0, vel): """Test PyrometheusMixture EOS for all available mechanisms. Tests that the PyrometheusMixture EOS gets the same thermo properties (p, T, e) as the Pyrometheus-native mechanism code. """ cl_ctx = ctx_factory() queue = cl.CommandQueue(cl_ctx) actx = PyOpenCLArrayContext(queue) nel_1d = 4 from meshmode.mesh.generation import generate_regular_rect_mesh mesh = generate_regular_rect_mesh(a=(-0.5, ) * dim, b=(0.5, ) * dim, nelements_per_axis=(nel_1d, ) * dim) order = 4 logger.info(f"Number of elements {mesh.nelements}") discr = EagerDGDiscretization(actx, mesh, order=order) from meshmode.dof_array import thaw nodes = thaw(actx, discr.nodes()) # Pyrometheus initialization mech_cti = get_mechanism_cti(mechname) sol = cantera.Solution(phase_id="gas", source=mech_cti) from mirgecom.thermochemistry import make_pyrometheus_mechanism_class prometheus_mechanism = make_pyrometheus_mechanism_class(sol)(actx.np) nspecies = prometheus_mechanism.num_species print(f"PrometheusMixture::Mechanism = {mechname}") print(f"PrometheusMixture::NumSpecies = {nspecies}") press0 = 101500.0 temp0 = 300.0 y0s = np.zeros(shape=(nspecies, )) for i in range(1, nspecies): y0s[i] = y0 / (10.0**i) y0s[0] = 1.0 - np.sum(y0s[1:]) velocity = vel * np.ones(shape=(dim, )) for fac in range(1, 7): tempin = fac * temp0 pressin = fac * press0 print(f"Testing {mechname}(t,P) = ({tempin}, {pressin})") ones = discr.zeros(actx) + 1.0 tin = tempin * ones pin = pressin * ones yin = y0s * ones tguess = 300.0 pyro_rho = prometheus_mechanism.get_density(pin, tin, yin) pyro_e = prometheus_mechanism.get_mixture_internal_energy_mass( tin, yin) pyro_t = prometheus_mechanism.get_temperature(pyro_e, tguess, yin) pyro_p = prometheus_mechanism.get_pressure(pyro_rho, pyro_t, yin) print(f"prom(rho, y, p, t, e) = ({pyro_rho}, {y0s}, " f"{pyro_p}, {pyro_t}, {pyro_e})") eos = PyrometheusMixture(prometheus_mechanism) gas_model = GasModel(eos=eos) initializer = MixtureInitializer(dim=dim, nspecies=nspecies, pressure=pyro_p, temperature=pyro_t, massfractions=y0s, velocity=velocity) cv = initializer(eos=eos, t=0, x_vec=nodes) fluid_state = make_fluid_state(cv, gas_model, temperature_seed=tguess) p = fluid_state.pressure temperature = fluid_state.temperature internal_energy = eos.get_internal_energy(temperature=tin, species_mass_fractions=yin) y = cv.species_mass_fractions print(f"pyro_y = {y}") print(f"pyro_eos.p = {p}") print(f"pyro_eos.temp = {temperature}") print(f"pyro_eos.e = {internal_energy}") def inf_norm(x): return actx.to_numpy(discr.norm(x, np.inf)) tol = 1e-14 assert inf_norm((cv.mass - pyro_rho) / pyro_rho) < tol assert inf_norm((temperature - pyro_t) / pyro_t) < tol assert inf_norm((internal_energy - pyro_e) / pyro_e) < tol assert inf_norm((p - pyro_p) / pyro_p) < tol