コード例 #1
0
 def _create_evaluation_order(self, pattern: Pattern):
     if pattern.statistics_type == StatisticsTypes.SELECTIVITY_MATRIX_AND_ARRIVAL_RATES:
         (selectivityMatrix, arrivalRates) = pattern.statistics
     else:
         raise MissingStatisticsException()
     return DynamicProgrammingLeftDeepTreeBuilder.find_order(
         selectivityMatrix, arrivalRates, pattern.window.total_seconds())
コード例 #2
0
ファイル: BushyTreeBuilders.py プロジェクト: evaseb/OpenCEP
 def build_single_pattern_eval_mechanism(self, pattern: Pattern):
     if pattern.statistics_type == StatisticsTypes.SELECTIVITY_MATRIX_AND_ARRIVAL_RATES:
         (selectivityMatrix, arrivalRates) = pattern.statistics
     else:
         raise MissingStatisticsException()
     tree_structure = self._find_tree(selectivityMatrix, arrivalRates,
                                      pattern.window.total_seconds())
     return TreeBasedEvaluationMechanism(pattern, tree_structure)
コード例 #3
0
ファイル: TreeCostModel.py プロジェクト: ofriol/OpenCEP
 def get_plan_cost(self, pattern: Pattern, plan: TreePlanNode):
     if pattern.statistics_type == StatisticsTypes.SELECTIVITY_MATRIX_AND_ARRIVAL_RATES:
         (selectivity_matrix, arrival_rates) = pattern.statistics
     else:
         raise MissingStatisticsException()
     _, _, cost = IntermediateResultsTreeCostModel.__get_plan_cost_aux(
         plan, selectivity_matrix, arrival_rates,
         pattern.window.total_seconds())
     return cost
コード例 #4
0
 def _create_evaluation_order(self, pattern: Pattern):
     if pattern.statistics_type == StatisticsTypes.SELECTIVITY_MATRIX_AND_ARRIVAL_RATES:
         (selectivityMatrix, arrivalRates) = pattern.statistics
     else:
         raise MissingStatisticsException()
     order = None
     if self.__initType == IterativeImprovementInitType.RANDOM:
         order = self.__get_random_order(len(arrivalRates))
     elif self.__initType == IterativeImprovementInitType.GREEDY:
         order = GreedyLeftDeepTreeBuilder.calculate_greedy_order(
             selectivityMatrix, arrivalRates)
     get_cost_callback = lambda o: self._get_order_cost(pattern, o)
     return self.__iterative_improvement.execute(self.__step_limit, order,
                                                 get_cost_callback)
コード例 #5
0
 def _create_evaluation_order(self, pattern: Pattern):
     if pattern.statistics_type == StatisticsTypes.FREQUENCY_DICT:
         frequency_dict = pattern.statistics
         order = get_order_by_occurrences(pattern.positive_structure.args,
                                          frequency_dict)
     elif pattern.statistics_type == StatisticsTypes.ARRIVAL_RATES:
         arrival_rates = pattern.statistics
         # create an index-arrival rate binding and sort according to arrival rate.
         sorted_order = sorted([(i, arrival_rates[i])
                                for i in range(len(arrival_rates))],
                               key=lambda x: x[1])
         order = [x for x, y in sorted_order
                  ]  # create order from sorted binding.
     else:
         raise MissingStatisticsException()
     return order
コード例 #6
0
    def _create_evaluation_order(self, pattern: Pattern):
        if pattern.statistics_type == StatisticsTypes.SELECTIVITY_MATRIX_AND_ARRIVAL_RATES:
            (selectivity_matrix, arrival_rates) = pattern.statistics
        else:
            raise MissingStatisticsException()
        args_num = len(selectivity_matrix)
        if args_num == 1:  # boring extreme case
            return [0]

        items = frozenset(range(args_num))
        # Save subsets' optimal orders, the cost and the left to add items.
        sub_orders = {
            frozenset({i}):
            ([i], self._get_order_cost(pattern, [i]), items.difference({i}))
            for i in items
        }

        for i in range(2, args_num + 1):
            # for each subset of size i, we will find the best order for each subset
            next_orders = {}
            for subset in sub_orders.keys():
                order, _, left_to_add = sub_orders[subset]
                for item in left_to_add:
                    # calculate for optional order for set of size i
                    new_subset = frozenset(subset.union({item}))
                    new_cost = self._get_order_cost(pattern, order)
                    # check if it is not the first order for that set
                    if new_subset in next_orders.keys():
                        _, t_cost, t_left = next_orders[new_subset]
                        if new_cost < t_cost:  # check if it is the current best order for that set
                            new_order = order + [item]
                            next_orders[
                                new_subset] = new_order, new_cost, t_left
                    else:  # if it is the first order for that set
                        new_order = order + [item]
                        next_orders[
                            new_subset] = new_order, new_cost, left_to_add.difference(
                                {item})
            # update subsets for next iteration
            sub_orders = next_orders
        return list(sub_orders.values())[0][
            0]  # return the order (at index 0 in the tuple) of item 0, the only item in subsets of size n.
コード例 #7
0
    def _create_tree_topology(self, pattern: Pattern):
        if pattern.statistics_type == StatisticsTypes.SELECTIVITY_MATRIX_AND_ARRIVAL_RATES:
            (selectivity_matrix, arrival_rates) = pattern.statistics
        else:
            raise MissingStatisticsException()

        args_num = len(selectivity_matrix)
        if args_num == 1:
            return [0]

        items = frozenset(range(args_num))
        # Save subsets' optimal topologies, the cost and the left to add items.
        sub_trees = {frozenset({i}): (TreePlanLeafNode(i),
                                      self._get_plan_cost(pattern, TreePlanLeafNode(i)),
                                      items.difference({i}))
                     for i in items}

        # for each subset of size i, find optimal topology for these subsets according to size (i-1) subsets.
        for i in range(2, args_num + 1):
            for tSubset in combinations(items, i):
                subset = frozenset(tSubset)
                disjoint_sets_iter = get_all_disjoint_sets(subset)  # iterator for all disjoint splits of a set.
                # use first option as speculative best.
                set1_, set2_ = next(disjoint_sets_iter)
                tree1_, _, _ = sub_trees[set1_]
                tree2_, _, _ = sub_trees[set2_]
                new_tree_ = TreePlanBuilder._instantiate_binary_node(pattern, tree1_, tree2_)
                new_cost_ = self._get_plan_cost(pattern, new_tree_)
                new_left_ = items.difference({subset})
                sub_trees[subset] = new_tree_, new_cost_, new_left_
                # find the best topology based on previous topologies for smaller subsets.
                for set1, set2 in disjoint_sets_iter:
                    tree1, _, _ = sub_trees[set1]
                    tree2, _, _ = sub_trees[set2]
                    new_tree = TreePlanBuilder._instantiate_binary_node(pattern, tree1, tree2)
                    new_cost = self._get_plan_cost(pattern, new_tree)
                    _, cost, left = sub_trees[subset]
                    # if new subset's topology is better, then update to it.
                    if new_cost < cost:
                        sub_trees[subset] = new_tree, new_cost, left
        return sub_trees[items][0]  # return the best topology (index 0 at tuple) for items - the set of all arguments.
コード例 #8
0
    def _create_tree_topology(self, pattern: Pattern):
        if pattern.statistics_type == StatisticsTypes.SELECTIVITY_MATRIX_AND_ARRIVAL_RATES:
            (selectivity_matrix, arrival_rates) = pattern.statistics
        else:
            raise MissingStatisticsException()

        order = self._get_initial_order(selectivity_matrix, arrival_rates)
        args_num = len(order)
        items = tuple(order)
        suborders = {
            (i,): (TreePlanLeafNode(i), self._get_plan_cost(pattern, TreePlanLeafNode(i)))
            for i in items
        }

        # iterate over suborders' sizes
        for i in range(2, args_num + 1):
            # iterate over suborders of size i
            for j in range(args_num - i + 1):
                # create the suborder (slice) to find its optimum.
                suborder = tuple(order[t] for t in range(j, j + i))
                # use first split of suborder as speculative best.
                order1_, order2_ = suborder[:1], suborder[1:]
                tree1_, _ = suborders[order1_]
                tree2_, _ = suborders[order2_]
                tree = TreePlanBuilder._instantiate_binary_node(pattern, tree1_, tree2_)
                cost = self._get_plan_cost(pattern, tree)
                suborders[suborder] = tree, cost
                # iterate over splits of suborder
                for k in range(2, i):
                    # find the optimal topology of this split, according to optimal topologies of subsplits.
                    order1, order2 = suborder[:k], suborder[k:]
                    tree1, _ = suborders[order1]
                    tree2, _ = suborders[order2]
                    _, prev_cost = suborders[suborder]
                    new_tree = TreePlanBuilder._instantiate_binary_node(pattern, tree1, tree2)
                    new_cost = self._get_plan_cost(pattern, new_tree)
                    if new_cost < prev_cost:
                        suborders[suborder] = new_tree, new_cost
        return suborders[items][0]  # return the topology (index 0 at tuple) of the entire order, indexed to 'items'.
コード例 #9
0
 def _create_evaluation_order(self, pattern: Pattern):
     if pattern.statistics_type == StatisticsTypes.SELECTIVITY_MATRIX_AND_ARRIVAL_RATES:
         (selectivityMatrix, arrivalRates) = pattern.statistics
     else:
         raise MissingStatisticsException()
     return self.calculate_greedy_order(selectivityMatrix, arrivalRates)