def MPDE_any_significant_annotated(global_variables, out_path, biotype, pde_IDs): out_file = open( os.path.join(out_path, "data", "genes_significant_in_any_PDEs_annotated.csv"), "w") master_gene_table = global_variables["master_gene_table"] # gets the header header_list = ["ID"] header_list += get_gene_background_header(global_variables) header_list += get_gene_mpde_header(pde_IDs) header_list += get_gene_normexp_header(global_variables) header_list += get_gene_normexp_stats_header(global_variables) header_list += get_gene_annotations_header(global_variables) out_file.write("\t".join(header_list) + "\n") # gets the genes for gene_ID in master_gene_table: gene_dictionary = master_gene_table[gene_ID] # tests for a valid gene: valid_gene = False present_in_any_pde = False if gene_dictionary["normexp_flag"]: if (global_variables["GENE_BIOTYPE_FLAG"] and (gene_dictionary["BIOTYPE"] == biotype or biotype == "all_genes") ) or global_variables["GENE_BIOTYPE_FLAG"] == False: valid_gene = True for pde_ID in pde_IDs: if pde_ID not in gene_dictionary: valid_gene = False else: pde_Dict = gene_dictionary[pde_ID] if not pde_Dict["in_gl"]: valid_gene = False if pde_Dict["sig"]: present_in_any_pde = True if valid_gene and present_in_any_pde: gene_out_list = [gene_ID] gene_out_list += get_gene_background(global_variables, gene_dictionary) gene_out_list += get_gene_mpde(global_variables, gene_dictionary, pde_IDs) gene_out_list += get_gene_normexp(global_variables, gene_dictionary) gene_out_list += get_gene_normexp_stats(global_variables, gene_dictionary) gene_out_list += get_gene_annotations(global_variables, gene_dictionary) out_file.write("\t".join(str(x) for x in gene_out_list) + "\n")
def Mde_all_significant_annotated(global_variables, out_path, biotype, de_IDs): out_file = open( os.path.join(out_path, "data", "genes_significant_in_all_des_annotated.csv"), "w") master_gene_table = global_variables["master_gene_table"] # gets the header header_list = ["ID"] header_list += get_gene_background_header(global_variables) header_list += get_gene_mde_header(de_IDs) header_list += get_gene_ne_header(global_variables) header_list += get_gene_ne_stats_header(global_variables) header_list += get_gene_annotations_header(global_variables) out_file.write("\t".join(header_list) + "\n") # gets the genes for gene_ID in master_gene_table: gene_dictionary = master_gene_table[gene_ID] # tests for a valid gene: valid_gene = False if gene_dictionary["ne_flag"]: if global_variables["GENE_BIOTYPE_FLAG"] and ( gene_dictionary["BIOTYPE"] == biotype or biotype == "all_genes"): valid_gene = True if global_variables["GENE_BIOTYPE_FLAG"] == False: valid_gene = True # determines if the gene is present in all des of the Mde: for de_ID in de_IDs: if de_ID not in gene_dictionary: valid_gene = False else: de_Dict = gene_dictionary[de_ID] if not de_Dict["in_gl"] or not de_Dict["sig"]: valid_gene = False if valid_gene: gene_out_list = [gene_ID] gene_out_list += get_gene_background(global_variables, gene_dictionary) gene_out_list += get_gene_mde(global_variables, gene_dictionary, de_IDs) gene_out_list += get_gene_ne(global_variables, gene_dictionary) gene_out_list += get_gene_ne_stats(global_variables, gene_dictionary) gene_out_list += get_gene_annotations(global_variables, gene_dictionary) out_file.write("\t".join(str(x) for x in gene_out_list) + "\n")
def PDE_annotated_significant_upregulated(global_variables, out_path, biotype, pde_ID): out_file = open( os.path.join(out_path, "data", "PDE_annotated_significant_upregulated.csv"), "w") master_gene_table = global_variables["master_gene_table"] # gets the header header_list = ["ID"] header_list += get_gene_background_header(global_variables) header_list += get_gene_pde_header(global_variables) header_list += get_gene_normexp_header(global_variables) header_list += get_gene_normexp_stats_header(global_variables) header_list += get_gene_annotations_header(global_variables) out_file.write("\t".join(header_list) + "\n") # gets the genes for gene_ID in master_gene_table: gene_dictionary = master_gene_table[gene_ID] # tests for a valid gene: valid_gene = False if gene_dictionary["normexp_flag"] and pde_ID in gene_dictionary: pde_Dict = gene_dictionary[pde_ID] if pde_Dict["in_gl"] and pde_Dict[ "sig"] and pde_Dict["log2fold"] > 0: if global_variables["GENE_BIOTYPE_FLAG"] and ( gene_dictionary["BIOTYPE"] == biotype or biotype == "all_genes"): valid_gene = True if global_variables["GENE_BIOTYPE_FLAG"] == False: valid_gene = True if valid_gene: gene_out_list = [gene_ID] gene_out_list += get_gene_background(global_variables, gene_dictionary) gene_out_list += get_gene_pde(global_variables, pde_Dict) gene_out_list += get_gene_normexp(global_variables, gene_dictionary) gene_out_list += get_gene_normexp_stats(global_variables, gene_dictionary) gene_out_list += get_gene_annotations(global_variables, gene_dictionary) out_file.write("\t".join(str(x) for x in gene_out_list) + "\n")
def normexp_matrix_annotated(global_variables, out_path, biotype): out_file = open( os.path.join(out_path, "data", "normexp_matrix_annotated.csv"), "w") master_gene_table = global_variables["master_gene_table"] # gets the header header_list = ["ID"] header_list += get_gene_background_header(global_variables) header_list += get_gene_normexp_header(global_variables) header_list += get_gene_normexp_stats_header(global_variables) header_list += get_gene_annotations_header(global_variables) out_file.write("\t".join(header_list) + "\n") # gets the gene expression for gene_ID in master_gene_table: gene_dictionary = master_gene_table[gene_ID] # tests for a valid gene: valid_gene = False if gene_dictionary["normexp_flag"]: if global_variables["GENE_BIOTYPE_FLAG"] and ( gene_dictionary["BIOTYPE"] == biotype or biotype == "all_genes"): valid_gene = True if global_variables["GENE_BIOTYPE_FLAG"] == False: valid_gene = True if valid_gene: gene_out_list = [gene_ID] gene_out_list += get_gene_background(global_variables, gene_dictionary) gene_out_list += get_gene_normexp(global_variables, gene_dictionary) gene_out_list += get_gene_normexp_stats(global_variables, gene_dictionary) gene_out_list += get_gene_annotations(global_variables, gene_dictionary) out_file.write("\t".join(str(x) for x in gene_out_list) + "\n")