コード例 #1
0
ファイル: model.py プロジェクト: zouharvi/kb-shrink
def report(prefix, encoded, data, post_cn):
    if post_cn:
        encoded = center_data(encoded)
        encoded = norm_data(encoded)
    val_l2 = rprec_l2(
        encoded["queries"], encoded["docs"],
        data["relevancy"], fast=True, report=False)
    if post_cn:
        val_ip = val_l2
    else:
        val_ip = rprec_ip(
            encoded["queries"], encoded["docs"],
            data["relevancy"], fast=True, report=False)
    print(f'{prefix} rprec_ip: {val_ip:.3f}, rprec_l2: {val_l2:.3f}')
    return val_ip, val_l2
コード例 #2
0
def summary_performance(name, dataReduced, dataReconstructed):
    if args.post_cn:
        dataReduced = center_data(dataReduced)
        dataReduced = norm_data(dataReduced)

    val_ip = rprec_ip(dataReduced["queries"],
                      dataReduced["docs"],
                      data["relevancy"],
                      fast=True)
    val_l2 = rprec_l2(dataReduced["queries"],
                      dataReduced["docs"],
                      data["relevancy"],
                      fast=True)
    loss_q = torch.nn.MSELoss()(torch.Tensor(data["queries"]),
                                torch.Tensor(dataReconstructed["queries"]))
    loss_d = torch.nn.MSELoss()(torch.Tensor(data["docs"]),
                                torch.Tensor(dataReconstructed["docs"]))
    return val_ip, val_l2, loss_q.item(), loss_d.item()
コード例 #3
0
ファイル: split.py プロジェクト: zouharvi/kb-shrink
def summary_performance(name, dataReduced, dataReconstructed):
    if args.post_cn:
        dataReduced = center_data(dataReduced)
        dataReduced = norm_data(dataReduced)

    val_ip = rprec_ip(dataReduced["queries"],
                      dataReduced["docs"],
                      data["relevancy"],
                      fast=True)
    val_l2 = rprec_l2(dataReduced["queries"],
                      dataReduced["docs"],
                      data["relevancy"],
                      fast=True)
    loss_q = torch.nn.MSELoss()(torch.Tensor(data["queries"]),
                                torch.Tensor(dataReconstructed["queries"]))
    loss_d = torch.nn.MSELoss()(torch.Tensor(data["docs"]),
                                torch.Tensor(dataReconstructed["docs"]))
    name = name.replace("float", "f")
    print(
        f"{name:<21} {loss_d:>7.5f} {loss_q:>7.5f} {val_ip:>5.3f} {val_l2:>5.3f}"
    )
    return val_ip, val_l2, loss_q.item(), loss_d.item()
コード例 #4
0
print("\nReduced norms")
print(
    f"Queries: {np.average(np.linalg.norm(dataReduced['queries'], axis=1)[:, np.newaxis]):.8f}"
)
print(
    f"Docs:    {np.average(np.linalg.norm(dataReduced['docs'], axis=1)[:, np.newaxis]):.8f}"
)

print("\nPerformance")
val_ip_pca = rprec_ip(dataReduced["queries"],
                      dataReduced["docs"],
                      data["relevancy"],
                      fast=True)
val_l2_pca = rprec_l2(dataReduced["queries"],
                      dataReduced["docs"],
                      data["relevancy"],
                      fast=True)
print(f"IP: {val_ip_pca}")
print(f"L2: {val_l2_pca}")

print("\nRenormalized performance")
dataReduced = center_data(dataReduced)
dataReduced = norm_data(dataReduced)
val_ip_pca = rprec_ip(dataReduced["queries"],
                      dataReduced["docs"],
                      data["relevancy"],
                      fast=True)
val_l2_pca = rprec_l2(dataReduced["queries"],
                      dataReduced["docs"],
                      data["relevancy"],
                      fast=True)