def main(): if not torch.cuda.is_available(): logging.info('no gpu device available') sys.exit(1) if args.auxiliary and args.net_type == 'macro': logging.info('auxiliary head classifier not supported for macro search space models') sys.exit(1) logging.info("args = %s", args) cudnn.enabled = True cudnn.benchmark = True np.random.seed(args.seed) torch.manual_seed(args.seed) torch.cuda.manual_seed(args.seed) # Data _, valid_transform = utils._data_transforms_cifar10(args) valid_data = torchvision.datasets.CIFAR10(root=args.data, train=False, download=True, transform=valid_transform) valid_queue = torch.utils.data.DataLoader( valid_data, batch_size=args.batch_size, shuffle=False, pin_memory=True, num_workers=1) # classes = ('plane', 'car', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck') # Model if args.net_type == 'micro': logging.info("==> Building micro search space encoded architectures") genotype = eval("genotypes.%s" % args.arch) net = PyrmNASNet(args.init_channels, num_classes=10, layers=args.layers, auxiliary=args.auxiliary, genotype=genotype, increment=args.filter_increment, SE=args.SE) elif args.net_type == 'macro': genome = eval("macro_genotypes.%s" % args.arch) channels = [(3, 128), (128, 128), (128, 128)] net = EvoNetwork(genome, channels, 10, (32, 32), decoder='dense') else: raise NameError('Unknown network type, please only use supported network type') # logging.info("{}".format(net)) logging.info("param size = %fMB", utils.count_parameters_in_MB(net)) net = net.to(device) # no drop path during inference net.droprate = 0.0 utils.load(net, args.model_path) criterion = nn.CrossEntropyLoss() criterion.to(device) # inference on original CIFAR-10 test images infer(valid_queue, net, criterion)
def main(): if not torch.cuda.is_available(): logging.info('no gpu device available') sys.exit(1) if args.auxiliary and args.net_type == 'macro': logging.info( 'auxiliary head classifier not supported for macro search space models' ) sys.exit(1) logging.info("args = %s", args) cudnn.enabled = True cudnn.benchmark = True np.random.seed(args.seed) torch.manual_seed(args.seed) torch.cuda.manual_seed(args.seed) best_acc = 0 # initiate a artificial best accuracy so far # Data train_transform, valid_transform = utils._data_transforms_cifar10(args) train_data = torchvision.datasets.CIFAR10(root=args.data, train=True, download=True, transform=train_transform) valid_data = torchvision.datasets.CIFAR10(root=args.data, train=False, download=True, transform=valid_transform) train_queue = torch.utils.data.DataLoader(train_data, batch_size=args.batch_size, shuffle=True, pin_memory=True, num_workers=2) valid_queue = torch.utils.data.DataLoader(valid_data, batch_size=128, shuffle=False, pin_memory=True, num_workers=2) # classes = ('plane', 'car', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck') # Model if args.net_type == 'micro': logging.info("==> Building micro search space encoded architectures") genotype = eval("genotypes.%s" % args.arch) net = PyrmNASNet(args.init_channels, num_classes=10, layers=args.layers, auxiliary=args.auxiliary, genotype=genotype, increment=args.filter_increment, SE=args.SE) elif args.net_type == 'macro': genome = eval("macro_genotypes.%s" % args.arch) channels = [(3, 128), (128, 128), (128, 128)] net = EvoNetwork(genome, channels, 10, (32, 32), decoder='dense') else: raise NameError( 'Unknown network type, please only use supported network type') # logging.info("{}".format(net)) logging.info("param size = %fMB", utils.count_parameters_in_MB(net)) net = net.to(device) n_epochs = args.epochs parameters = filter(lambda p: p.requires_grad, net.parameters()) criterion = nn.CrossEntropyLoss() criterion.to(device) optimizer = optim.SGD(parameters, lr=args.learning_rate, momentum=args.momentum, weight_decay=args.weight_decay) scheduler = torch.optim.lr_scheduler.CosineAnnealingLR( optimizer, n_epochs, eta_min=args.min_learning_rate) for epoch in range(n_epochs): scheduler.step() logging.info('epoch %d lr %e', epoch, scheduler.get_lr()[0]) net.droprate = args.droprate * epoch / args.epochs train(train_queue, net, criterion, optimizer) _, valid_acc = infer(valid_queue, net, criterion) if valid_acc > best_acc: utils.save(net, os.path.join(args.save, 'weights.pt')) best_acc = valid_acc
def main(args): save_dir = f'{os.path.dirname(os.path.abspath(__file__))}/../train/train-{args.save}-{time.strftime("%Y%m%d-%H%M%S")}' utils.create_exp_dir(save_dir) data_root = '../data' CIFAR_CLASSES = config_dict()['n_classes'] INPUT_CHANNELS = config_dict()['n_channels'] if not torch.cuda.is_available(): logging.info('no gpu device available') sys.exit(1) if args.auxiliary and args.net_type == 'macro': logging.info( 'auxiliary head classifier not supported for macro search space models' ) sys.exit(1) logging.info("args = %s", args) cudnn.enabled = True cudnn.benchmark = True np.random.seed(args.seed) torch.manual_seed(args.seed) torch.cuda.manual_seed(args.seed) best_acc = 0 # initiate a artificial best accuracy so far # Data train_transform, valid_transform = utils._data_transforms_cifar10(args) # train_data = torchvision.datasets.CIFAR10(root=args.data, train=True, download=True, transform=train_transform) # valid_data = torchvision.datasets.CIFAR10(root=args.data, train=False, download=True, transform=valid_transform) train_data = my_cifar10.CIFAR10(root=data_root, train=True, download=False, transform=train_transform) valid_data = my_cifar10.CIFAR10(root=data_root, train=False, download=False, transform=valid_transform) train_queue = torch.utils.data.DataLoader(train_data, batch_size=args.batch_size, shuffle=True, pin_memory=True, num_workers=1) valid_queue = torch.utils.data.DataLoader(valid_data, batch_size=128, shuffle=False, pin_memory=True, num_workers=1) # Model if args.net_type == 'micro': logging.info("==> Building micro search space encoded architectures") genotype = eval("genotypes.%s" % args.arch) net = NetworkCIFAR(args.init_channels, num_classes=CIFAR_CLASSES, num_channels=INPUT_CHANNELS, layers=args.layers, auxiliary=args.auxiliary, genotype=genotype, SE=args.SE) elif args.net_type == 'macro': genome = eval("macro_genotypes.%s" % args.arch) channels = [(INPUT_CHANNELS, 128), (128, 128), (128, 128)] net = EvoNetwork( genome, channels, CIFAR_CLASSES, (config_dict()['INPUT_HEIGHT'], config_dict()['INPUT_WIDTH']), decoder='dense') else: raise NameError( 'Unknown network type, please only use supported network type') # logging.info("{}".format(net)) logging.info("param size = %fMB", utils.count_parameters_in_MB(net)) net = net.to(device) n_epochs = args.epochs parameters = filter(lambda p: p.requires_grad, net.parameters()) criterion = nn.CrossEntropyLoss() criterion.to(device) optimizer = optim.SGD(parameters, lr=args.learning_rate, momentum=args.momentum, weight_decay=args.weight_decay) scheduler = torch.optim.lr_scheduler.CosineAnnealingLR( optimizer, n_epochs, eta_min=args.min_learning_rate) for epoch in range(n_epochs): scheduler.step() logging.info('epoch %d lr %e', epoch, scheduler.get_lr()[0]) net.droprate = args.droprate * epoch / args.epochs train(args, train_queue, net, criterion, optimizer) _, valid_acc = infer(args, valid_queue, net, criterion) if valid_acc > best_acc: utils.save(net, os.path.join(save_dir, 'weights.pt')) best_acc = valid_acc return best_acc