コード例 #1
0
def merge(gather_dir=os.getcwd(),
          combine_type='run',
          base_name='',
          out_dir='',
          **params):
    """
    Merges the epoched*.pkl objects in gather_dir
    Arguments:
        gather_dir: path to folder containing epoched files
        combine_type: 'run' to combine averages of each run
                      'trial' to combine every trial
    Outputs:
        merged.pkl, merged.mat containing the merged Epoched object
        A plot is also generated

    """
    files = [
        f for f in os.listdir(gather_dir)
        if ('mat' or 'pkl' in f) and 'epoched' in f
    ]
    merged = None
    for f in files:
        run = read_epoch(os.path.join(gather_dir, f))

        if merged is None:
            merged = Epoched(run.n_categs, run.n_samples, 0)
            merged.names = run.names
            merged.num_trials = [0 for i in range(len(run.num_trials))]
            merged.num_rejected = [0 for i in range(len(run.num_rejected))]

        if combine_type == 'run':
            with warnings.catch_warnings():
                warnings.simplefilter("ignore")
                avg = np.nanmean(run.matrix, axis=2, keepdims=True)
            merged.matrix = np.concatenate((merged.matrix, avg), axis=2)
        elif combine_type == 'trial':
            merged.matrix = np.concatenate((merged.matrix, run.matrix), axis=2)

        if len(run.num_trials) == len(merged.num_trials):
            merged.num_trials = [
                x + y for x, y in zip(run.num_trials, merged.num_trials)
            ]
        if len(run.num_rejected) == len(merged.num_rejected):
            merged.num_rejected = [
                x + y for x, y in zip(run.num_rejected, merged.num_rejected)
            ]
    spio.savemat(
        make_path('merged', '.mat', out_dir=out_dir, base_name=base_name),
        {'merged': merged})
    save_pkl(make_path('merged', '.pkl', out_dir=out_dir, base_name=base_name),
             merged)
    plot_conds(merged, out_dir=out_dir, base_name=base_name, **params)
コード例 #2
0
def train(map_name, num_timesteps, batch_steps, seed, network, ar, lr,
          lrschedule, screen_size, minimap_size, step_mul, num_cpu, optimizer,
          ent_coef, vl_coef, max_grad_norm):
    maps.get(map_name)  # Assert the map exists.

    log_path = './experiments/%s/' % (time.strftime("%m%d_%H%M_") + map_name)
    make_path(log_path)
    make_path("%sreplay" % log_path)

    def make_env(rank):
        def _thunk():
            agent_interface = features.parse_agent_interface_format(
                feature_screen=64, feature_minimap=64)
            env = sc2_env.SC2Env(
                map_name=map_name,
                step_mul=step_mul,
                agent_interface_format=agent_interface,
                # screen_size_px=(screen_size, screen_size),
                # minimap_size_px=(minimap_size, minimap_size),
                visualize=False)
            return env

        return _thunk

    set_global_seeds(seed)

    log_file = open("%sconfig.log" % log_path, "a+")
    log_file.write("Map Name: %s\n" % map_name)
    log_file.write("Optimizer: %s\n" % optimizer)
    log_file.write("Network: %s\n" % network)
    log_file.write("Learning Rate: %f\n" % lr)
    log_file.write("Entropy Coefficient: %f\n" % ent_coef)
    log_file.write("Value Function Coefficient: %f\n" % vl_coef)
    log_file.write("Maximum Gradient Norm: %f\n" % max_grad_norm)
    log_file.write("Screen Size: %d\n" % screen_size)
    log_file.write("Minimap Size: %d\n" % minimap_size)
    log_file.write("Batch Steps: %d\n" % batch_steps)
    log_file.close()

    learn(network,
          log_path,
          make_env,
          total_timesteps=num_timesteps,
          nsteps=batch_steps,
          ent_coef=ent_coef,
          max_grad_norm=max_grad_norm,
          optimizer=optimizer,
          vl_coef=vl_coef,
          ar=ar,
          lr=lr,
          num_cpu=num_cpu)
コード例 #3
0
def plot_line(pupil_data, time_list, time_with_ecog, start_index, channel_name,
                merged, out_dir, base_name, pupil_data_smooth_matrix):

    for count, i in enumerate(conds_to_plot):
        to_plot = pupil_data_smooth_matrix[count]
        fig1, ax1 = plots.subplots()
        ax1.set_xlabel('Time (ms)')
        x = time_list
        y = to_plot[0:len(time_list)]
        ax1.plot(x, y, color = plot_colors_line[count], lw = 0.8, ls=line_style)
        ax1.plot(np.nan, color=plot_colors_line[count+3], lw=0.8, ls= '-')
        ax1.set_ylabel('Baseline Corrected Pupil Diameter')
        ax1.set_xlim([0,0.8])
        a = time_with_ecog[0, start_index:]
        b = time_with_ecog[count+1, start_index:]
        ax2 = ax1.twinx()
        ax2.plot(a, b, color = plot_colors_line[count+3], lw= 0.8, ls='-')
        ax2.set_ylabel('HFB Power')
        plots.title('Subject ' + str(subject) + ', Channel ' + str(channel_name) +
                            ', Condition '+ str(merged.names[i]), fontsize = 10)
        ax1.legend(labels = ['Pupil', 'ECoG'], loc='upper right', fontsize=7)
        plots.gcf().subplots_adjust(left=0.15)
        plots.savefig(make_path('pupil_ecog_correlation_'+str(merged.names[i])+str(subject), '.png',
                        out_dir=out_dir, base_name=str(channel_name)),dpi=600,bbox_inches='tight')

        if all_channels:
            if show:
                plots.show()
        else:
            plots.close()

    return fig1
コード例 #4
0
def plot_scatter(pupil_data, desired_indecies, ecog_matrix, merged,
                 channel_name, out_dir, base_name, pupil_data_smooth_matrix):
    labels = []
    n = len(ecog_matrix[1, :])

    fig, ax = plots.subplots()
    for count, i in enumerate(conds_to_plot):
        #use this if you want to plot not-smoothed data
        #x = pupil_data[count, 0:len(desired_indecies)]
        to_plot = pupil_data_smooth_matrix[count]
        x = to_plot[0:len(desired_indecies)]
        y = ecog_matrix[count + 1, :]
        slope, intercept, r_value, p_value, std_err = stats.linregress(x, y)
        r_value = np.round(r_value, 3)
        p_value = np.round(p_value, 4)
        ax.plot(x,
                y,
                marker='o',
                color=plot_colors_scatter[count],
                linestyle='None',
                label=merged.names[i],
                ms=1)
        labels = np.append(labels,
                           merged.names[i] + ', r-value = ' + str(r_value))
        #+', p-value= ' + str(p_value))

    ax.legend(labels=labels, loc='upper left', fontsize=7)

    for count, i in enumerate(conds_to_plot):
        #x = pupil_data[count, 0:len(desired_indecies)]
        to_plot = pupil_data_smooth_matrix[count]
        x = to_plot[0:len(desired_indecies)]
        y = ecog_matrix[count + 1, :]
        slope, intercept, r_value, p_value, std_err = stats.linregress(x, y)
        ax.plot(x,
                intercept + slope * x,
                'r',
                color=plot_colors_scatter[count],
                lw=-0.8)

    ax.annotate('n= ' + str(n),
                xy=(1, 0),
                xycoords='axes fraction',
                fontsize=10,
                horizontalalignment='right',
                verticalalignment='bottom')
    ax.set_xlabel('Baseline Corrected Pupil Diameter (mm)')
    ax.set_ylabel('HFB Power')
    plots.title('Pupil/ECoG Correlation: ' + 'Subject ' + str(subject) +
                ', Channel ' + str(channel_name),
                fontsize=12)
    plots.savefig(make_path('pupil_ecog_correlation_scatter',
                            '.png',
                            out_dir=out_dir,
                            base_name=str(channel_name)),
                  dpi=600)
    plots.close()

    return fig
コード例 #5
0
def save_params(params):
    with open(make_path('parameters', '.py', **params), 'w') as f:
        f.write('params = {}\n')
        for k, v in params.items():
            if type(v) == str:
                f.write("params['" + str(k) + "']" + " = " + "'" + str(v) +
                        "'" + '\n')
            else:
                f.write("params['" + str(k) + "']" + " = " + str(v) + '\n')
コード例 #6
0
def qualitycheck(raw, out_dir='', base_name='', **params):
    '''
    Does a quality check of the raw data. Using paramters in **params.
    '''
    print('\nChecking the quality...\n')
    plot_raw(raw, out_dir=out_dir, base_name=base_name)
    check_outliers(raw, out_dir=out_dir, base_name=base_name, **params)
    calculate_stats(raw, out_dir=out_dir, base_name=base_name)
    raw.to_csv(make_path('outliers_removed', '.csv', out_dir=out_dir,
                         base_name=base_name), index=False)
コード例 #7
0
def plot_raw(raw, name='raw_plot', title='Raw Data Plot', out_dir='', base_name='', **params):
    '''
    Creates a scatter plot from the raw data and saves it to a file.
    Takes in the dataframe and requires params['out_dir'], and params['base_name']
    '''
    s = [4 for _ in range(len(raw))]
    # ax = raw.plot(x='Time', y='Pupil', title=title)
    ax = raw.plot(x='Time', y='Pupil', kind='scatter', title=title, s=s)
    ax.set(xlabel="Time", ylabel="Pupil Diameter (mm)")
    plt.savefig(make_path(name, '.png', out_dir=out_dir,
                          base_name=base_name, **params))
    plt.cla()
    plt.clf()
    plt.close()
コード例 #8
0
def calculate_stats(raw, fname='descriptive_stats', plot=True, out_dir='', base_name='', **params):
    '''
    Calculates descriptive statistics on the raw data. Save the results into a
    file called descriptive_stats. Another plot with these stats is saved in
    a file called raw_plot_with_stats_outliers_removed.
    '''
    stats = raw.Pupil.describe()
    if plot:
        ax = raw.plot(x='Time', y='Pupil',
                      title='Raw Data (Outliers Removed)')
        plt.axhline(stats['mean'], color='r', label='mean')
        plt.axhline(stats['25%'], color='g', label='25%')
        plt.axhline(stats['50%'], color='g', label='median')
        plt.axhline(stats['75%'], color='g', label='75%')
        ax.set(xlabel="Time (ms)", ylabel="Pupil Diameter (mm)")
        plt.legend()
        plt.savefig(make_path('raw_plot_with_stats_outliers_removed', '.png',
                              out_dir=out_dir, base_name=base_name))
        plt.cla()
        plt.clf()
        plt.close()
    stats.to_csv(
        make_path(fname, '.csv', out_dir=out_dir, base_name=base_name))
コード例 #9
0
def check_outliers(raw, impossible_upper=5, impossible_lower=1.5, out_dir='', base_name='', **params):
    '''
    Counts and removes outliers in the raw data. Saves a report of the number
    of unusable samples based on the largest and smallest values specified in
    params['impossible_upper'] and params['impossible_lower'].
    '''

    nsamples = len(raw)

    raw.loc[(raw.Pupil < impossible_lower) | (
        raw.Pupil > impossible_upper), 'Pupil'] = np.nan
    count = raw.Pupil.count()
    string = '{} out of {} samples were within acceptable range({} - {})\nPercentage of usable data: {}%'.format(
        count, nsamples, impossible_lower, impossible_upper, count / nsamples * 100)
    print(string)
    with open(make_path('outlier_report', '.txt', base_name=base_name, out_dir=out_dir, **params), 'w') as f:
        f.write(string)
コード例 #10
0
def plot_conds(epoched,
               conds_to_plot='all',
               plot_colors=def_cols,
               plot_style=def_style,
               plot_error=True,
               sample_rate=250,
               back_time=60,
               plot_title='Pupil Diameter',
               plot_fname='pupil_diameter_plot',
               out_dir='',
               base_name='',
               y_label='',
               plot_nums=True,
               **params):
    '''
    Averages across trials in each condition and saves a plot

    Arguments:
            epoched: An Epoched object, like the one one outputed by epoch()
            conds_to_plot: A list of indices of conditions to plot or 'all'
                                            To plot all conditions
            plot_colors: list of colors in hex format. E.g. '#00FF00'
            plot_style: list of style specs like ['-', ':']
            plot_error: True or False
            sample_rate: Sample rate of the eye tracker (hz)
            back_time: Time to plot before event (ms)
            plot_title: Title of the plot
            plot_fname: File name of the saved image
            out_dir: Outputs will be saved to this directory
            base_name: string is appended to output files

    '''
    print('\nPlotting...\n')

    # Calulates the mean and errors (ignoring nans), supress warnings
    with warnings.catch_warnings():
        warnings.simplefilter("ignore")
        errors = stat.sem(epoched.matrix, axis=2, ddof=1, nan_policy='omit')
        flattened = np.nanmean(epoched.matrix, axis=2)

    if conds_to_plot == 'all':
        conds_to_plot = [i for i in range(epoched.n_categs)]
    assert len(plot_colors) >= len(
        conds_to_plot), 'Require more colors than plotted conditions'
    assert len(plot_style) > len(
        conds_to_plot), 'Require more styles than plotted conditions'
    x = [
        1000 * i / sample_rate - back_time
        for i in range(epoched.total_samples)
    ]

    fig, ax = plt.subplots()
    fig.set_size_inches(8, 5)

    # i is the index of the condition, count is the order of plotting
    for count, i in enumerate(conds_to_plot):
        y = flattened[i, :]
        ax.plot(x,
                y,
                label=epoched.names[i],
                color=plot_colors[count],
                ls=plot_style[count])

        # Plot error bars
        if plot_error:
            err = errors[i, :]
            ax.fill_between(x,
                            y - err,
                            y + err,
                            alpha=0.25,
                            color=plot_colors[count])

    num_plotted = [
        x - y for x, y in zip(epoched.num_trials, epoched.num_rejected)
    ]
    if plot_nums:
        plot_title += '\n # trials plotted: ' + str(num_plotted)
    # Formatting...
    ax.set_xlabel('Time (ms)')
    ax.set_ylabel(y_label)
    plt.axvline(x=0, lw=0.5, color='0')
    plt.xlim((x[0], x[-1]))
    box = ax.get_position()
    ax.set_position([box.x0, box.y0, box.width * 0.9, box.height])
    ax.legend(bbox_to_anchor=(1, 1.04), frameon=False)
    plt.title(plot_title)
    ax.spines['top'].set_visible(False)
    ax.spines['right'].set_visible(False)
    plt.savefig(make_path(plot_fname,
                          '.png',
                          out_dir=out_dir,
                          base_name=base_name),
                bbox_inches='tight',
                dpi=600)
コード例 #11
0
ファイル: epoch.py プロジェクト: harrysha1029/pupil
def epoch(pupil_data,
          events_path,
          sample_rate=250,
          epoch_time=200,
          back_time=60,
          out_dir='',
          base_name='',
          baseline_type='no',
          **params):
    '''
    Epochs the pupil_data according to behavioural events specified
    by the events file in events_path.

    Arguments:
        pupil_data: A pupil_data object like the one loaded by read_pupil

        events_path <str>: A path to the events file (see tutorial)

        sample_rate <int>: The sample rate of your pupil recording

        epoch_time <int>: Time in ms to epoch

        back_time <int>: Time before the event to plot

    Returns:
        epoched <Epoched>: an Epoched object defined above
    '''

    print('\nEpoching...\n')

    # Find all the events
    pupil_events = pupil_data[pupil_data['Content'] != '-']
    num_events = len(pupil_events)
    print('There are {} events in the pupil data, does '
          'this look correct? If not, the first two events '
          'of pupil may not have been recorded...'.format(num_events))

    # Reads behavioral events
    # TODO: from python
    categories = read_events(events_path, pupil_events.Time.iat[0])
    samples_per_epoch = get_nsamples(sample_rate, epoch_time, back_time)
    # Initialize output variables
    epoched = Epoched(len(categories), samples_per_epoch, num_events)
    # Extra: Report median miss time.
    # Get the baseline dictionary mapping from time to baseline values.
    bl_events = None
    if type(baseline_type) == tuple:
        bl_events = get_baseline_events(pupil_events,
                                        categories[baseline_type[1]])

    for c, category in enumerate(categories):
        epoched.names.append(category.name)
        # +1 to exclude the content sample, which is out of sync.
        onsets = list(
            map(lambda x: get_nearest_ind(pupil_events, x) + 1,
                category.start))
        rejected_inds = []
        rejected = 0
        for t, onset in enumerate(onsets):
            # Note the -1 to avoid the content sample
            pre = pupil_data.Pupil.iloc[onset - samples_per_epoch[0] -
                                        1:onset - 1].values
            post = pupil_data.Pupil.iloc[onset:onset +
                                         samples_per_epoch[1]].values
            baseline = get_baseline(pupil_data, onset, baseline_type,
                                    sample_rate, bl_events)
            trial = np.concatenate((pre, post)) - baseline

            if np.isnan(np.sum(trial)):  # Checks if there is a nan
                rejected_inds.append(t)
                rejected += 1
            elif len(trial) == sum(samples_per_epoch):
                epoched.matrix[c, :, t - rejected] = trial

        epoched.num_trials.append(len(onsets))
        epoched.num_rejected.append(rejected)
        epoched.rejected[category.name] = rejected_inds

    # Save .mat and .pkl of epoched data
    spio.savemat(
        make_path('epoched', '.mat', out_dir=out_dir, base_name=base_name),
        {'epoched': epoched})
    save_pkl(
        make_path('epoched', '.pkl', out_dir=out_dir, base_name=base_name),
        epoched)

    return epoched