コード例 #1
0
def demo_cluster_example_1():
    X,_,_,_ = demo_cluster_data()
    # plot the input data
    fig, ax = plt.subplots(figsize=(8, 6))
    ax.scatter(X[:, 0], X[:, 1], s=50, color='gray')

    # format the plot
    mf.format_plot(ax, 'Input Data')
コード例 #2
0
def demo_dimensionality_reduction_example_1():
    X, _ = demo_swiss_roll_data()
    # visualize data
    fig, ax = plt.subplots()
    ax.scatter(X[:, 0], X[:, 1], color='gray', s=30)

    # format the plot
    mf.format_plot(ax, 'Input Data')
コード例 #3
0
def demo_cluster_example_2():

    X,y,_,_ = demo_cluster_data()
    # plot the data with cluster labels
    fig, ax = plt.subplots(figsize=(8, 6))
    ax.scatter(X[:, 0], X[:, 1], s=50, c=y, cmap='viridis')

    # format the plot
    mf.format_plot(ax, 'Learned Cluster Labels')
コード例 #4
0
def demo_regression_example_1():
    X, y, _, _, _ = demo_regression_data()
    # plot data points
    fig, ax = plt.subplots()
    points = ax.scatter(X[:, 0], X[:, 1], c=y, s=50,
                        cmap='viridis')

    # format plot
    mf.format_plot(ax, 'Input Data')
    ax.axis([-4, 4, -3, 3])
コード例 #5
0
def demo_classification_example_1():

    X, y, X2, y2, clf = demo_classification_data()
    # plot the data
    fig, ax = plt.subplots(figsize=(8, 6))
    point_style = dict(cmap='Paired', s=50)
    ax.scatter(X[:, 0], X[:, 1], c=y, **point_style)

    # format plot
    mf.format_plot(ax, 'Input Data')
    ax.axis([-1, 4, -2, 7])
コード例 #6
0
def demo_dimensionality_reduction_example_2():
    X, y = demo_swiss_roll_data()
    # create model
    model = Isomap(n_neighbors=8, n_components=1)
    y_fit = model.fit_transform(X).ravel()

    # visualize data
    fig, ax = plt.subplots()
    pts = ax.scatter(X[:, 0], X[:, 1], c=y_fit, cmap='viridis', s=30)
    cb = fig.colorbar(pts, ax=ax)

    # format the plot
    mf.format_plot(ax, 'Learned Latent Parameter')
    cb.set_ticks([])
    cb.set_label('Latent Variable', color='gray')
コード例 #7
0
def demo_regression_example_3():
    X, y, _, _, model = demo_regression_data()
    # plot data points
    fig, ax = plt.subplots()
    pts = ax.scatter(X[:, 0], X[:, 1], c=y, s=50,
                     cmap='viridis', zorder=2)

    # compute and plot model color mesh
    xx, yy = np.meshgrid(np.linspace(-4, 4),
                         np.linspace(-3, 3))
    Xfit = np.vstack([xx.ravel(), yy.ravel()]).T
    yfit = model.predict(Xfit)
    zz = yfit.reshape(xx.shape)
    ax.pcolorfast([-4, 4], [-3, 3], zz, alpha=0.5,
                  cmap='viridis', norm=pts.norm, zorder=1)

    # format plot
    mf.format_plot(ax, 'Input Data with Linear Fit')
    ax.axis([-4, 4, -3, 3])
コード例 #8
0
def demo_classification_example_2():

    X, y, X2, y2, clf = demo_classification_data()

    # Get contours describing the model
    xx = np.linspace(-1, 4, 10)
    yy = np.linspace(-2, 7, 10)
    xy1, xy2 = np.meshgrid(xx, yy)
    point_style = dict(cmap='Paired', s=50)
    Z = np.array([clf.decision_function([t])
                  for t in zip(xy1.flat, xy2.flat)]).reshape(xy1.shape)

    # plot points and model
    fig, ax = plt.subplots(figsize=(8, 6))
    line_style = dict(levels = [-1.0, 0.0, 1.0],
                      linestyles = ['dashed', 'solid', 'dashed'],
                      colors = 'gray', linewidths=1)
    ax.scatter(X[:, 0], X[:, 1], c=y, **point_style)
    ax.contour(xy1, xy2, Z, **line_style)

    # format plot
    mf.format_plot(ax, 'Model Learned from Input Data')
    ax.axis([-1, 4, -2, 7])