コード例 #1
0
 def initialize_model(self, initializationParameters):
     """
     Creates and returns an Task which initializes the model with the 
     optional parameters provided
     
     :param initializationParameters: The parameters used for initialization
     :return: The created Task object
     """
     logger.debug("Initialize model called")
     try:
         params = initializationParameters
         if not isinstance(params, InitParams) and cx.request.is_json:
             params = datautils.deserialize_model(cx.request.get_json(), InitParams)
         assert isinstance(params, InitParams)
        
         task = ModelInstanceTask(operation='initialize',
             parameters={"objectives": params.objectives, 
                         "props": params.model_properties, 
                         "hparams": params.hyperparameters})
         logger.debug('Created initialize model task', extra={'model_task': task})
     except RuntimeError as inst:
         msg = "Error during model initialization: %s" % str(inst)
         logger.exception(msg)
         return ServiceError(500, msg), 500
     
     self.add_task(task)
コード例 #2
0
ファイル: plugin_manager.py プロジェクト: mistkml/mistk
    def _read_metrics(self, uri):
        if not os.path.exists(uri):
            logger.warn(
                "Plugin defaults file does not exist at %s."
                "It will now be created and populated with"
                " default values", uri)
            os.makedirs(os.path.dirname(uri), exist_ok=True)
            src = os.path.join(os.path.dirname(__file__), "metrics.json")
            shutil.copy(src, uri)

        with self._read(uri) as reader:
            metric_dict_list = json.load(reader)
            self._default_metrics = metric_dict_list

            for metric_dict in metric_dict_list:
                logger.info('metric json loading: ' + str(metric_dict))
                metric_object = datautils.deserialize_model(
                    metric_dict, MistkMetric)
                logger.info('metric loaded: ' + str(metric_object))
                if metric_object.package and metric_object.method:
                    self._metric_dict[metric_object.package + '.' +
                                      metric_object.method] = metric_object
                else:
                    self._metric_dict[
                        metric_object.object_info.name] = metric_object
                self._metric_list.append(metric_object)

        logger.info('Metrics loaded.')
コード例 #3
0
 def load_data(self, datasets):
     """
     Creates and returns a Task which loads data into a model using the bindings provided
     
     :param datasets: dictionary mapping dataset function to dataset
     :return: The create Task object
     """
     logger.debug("Load data called")
     try:            
         if not isinstance(list(datasets.values())[0], MistkDataset) and cx.request.is_json:
             datasets = {key : datautils.deserialize_model(ds, MistkDataset) for 
                         key, ds in cx.request.get_json().items()}
                     
         task = ModelInstanceTask(operation="load_data",
                     parameters = {"dataset_map": datasets})
         self.add_task(task)
     except RuntimeError as inst:
         msg = "Error while loading data into model: %s" % str(inst)
         logger.exception(msg)
         return ServiceError(500, msg), 500 
コード例 #4
0
ファイル: evaluator.py プロジェクト: ricklentz/mistk
def perform_assessment(eval_type, eval_input_path, eval_input_format,
                       ground_truth_path, evaluation_path):
    """
    Performs a metric's assessment using the predictions and ground truth files provided.
    Stored the assessment results as a JSON file in the predictions_path
    
    :param eval_type: The evaluation type. One of {'BinaryClassification', 
        'MultilabelClassification', 'MulticlassClassification', 'Regression'}
    :param eval_input_path: Path to input data for the evaluation
    :param eval_input_format: The format of the input data
    :param ground_truth_path: The directory path where the ground_truth.csv file is located
    :param evaluation_path: A directory path to where all of the output files should be stored
    """
    if eval_input_format not in "predictions":
        msg = "EvaluationInputFormat %s is not supported by this Metric Evaluator, only 'predictions' are supported" % eval_input_format
        logging.error(msg)
        raise Exception(msg)
    # load prediction results
    full_predictions_path = os.path.join(eval_input_path, "predictions.csv")
    logging.info("Reading results from " + full_predictions_path)
    results_csv = []
    possible_cols = ['rowid', 'labels', 'confidence', 'bounds']
    with open(full_predictions_path) as fp:
        # Check if the file has a header line, skip if necessary
        has_header = csv.Sniffer().has_header(fp.read(2048))
        fp.seek(0)  # Rewind.
        reader = csv.reader(fp)
        # ignore header for now
        if has_header:
            next(reader)
        for data in reader:
            results_csv.append(data)
    results_df = pandas.DataFrame(results_csv)
    # rename columns
    for i, _ in enumerate(results_df.columns.values):
        if i < len(possible_cols):
            results_df.rename(columns={i: possible_cols[i]}, inplace=True)
    # create columns if they do not exist
    for nancol in possible_cols[len(results_df.columns):len(possible_cols)]:
        results_df[nancol] = np.nan

    # load ground truth
    full_ground_truth_path = os.path.join(ground_truth_path,
                                          "ground_truth.csv")
    logging.info("Reading ground truth from " + full_ground_truth_path)
    truth_csv = []
    possible_cols = ['rowid', 'labels', 'bounds']
    with open(full_ground_truth_path) as fp:
        # Check if the file has a header line, skip if necessary
        has_header = csv.Sniffer().has_header(fp.read(2048))
        fp.seek(0)  # Rewind.
        reader = csv.reader(fp)
        # ignore header for now
        if has_header:
            next(reader)
        for data in reader:
            truth_csv.append(data)
    truth_df = pandas.DataFrame(truth_csv)
    # rename columns
    for i, _ in enumerate(truth_df.columns.values):
        if i < len(possible_cols):
            truth_df.rename(columns={i: possible_cols[i]}, inplace=True)
    # create columns if they do not exist
    for nancol in possible_cols[len(truth_df.columns):len(possible_cols)]:
        truth_df[nancol] = np.nan

    # match ground truth to results by id
    truth_df = truth_df.loc[truth_df['rowid'].isin(results_df['rowid'])]

    # sort the rows by id
    results_df.sort_values(by='rowid', inplace=True)
    truth_df.sort_values(by='rowid', inplace=True)

    if eval_type == "MultilabelClassification" or eval_type == "MulticlassClassification":
        # create matrices for labels and confidence
        label_mlb = MultiLabelBinarizer()
        parsed_truth_labels = (
            truth_df['labels'].str.split().values.tolist()
            if truth_df['labels'].dtype == 'object' else np.array(
                np.transpose(np.matrix(truth_df['labels'].values))))
        parsed_results_labels = (
            results_df['labels'].str.split().values.tolist()
            if results_df['labels'].dtype == 'object' else np.array(
                np.transpose(np.matrix(results_df['labels'].values))))
        label_mlb.fit(
            np.append(parsed_truth_labels, parsed_results_labels, axis=0))
        truth_labels_matrix = label_mlb.transform(parsed_truth_labels)
        results_labels_matrix = label_mlb.transform(parsed_results_labels)

        if 'confidence' in results_df and not results_df['confidence'].hasnans:
            parsed_confidence = (
                results_df['confidence'].str.split().values.tolist()
                if results_df['confidence'].dtype == 'object' else np.array(
                    np.transpose(np.matrix(results_df['confidence'].values))))
            confidence_matrix = np.empty(results_labels_matrix.shape)
            label_classes = label_mlb.classes_.tolist()
            for row_index, row in enumerate(parsed_results_labels):
                confidence_row = np.zeros(results_labels_matrix.shape[1])
                for col_index, col in enumerate(row):
                    label_pos = label_classes.index(col)
                    confidence_row[label_pos] = np.float64(
                        parsed_confidence[row_index][col_index])  #pylint: disable=no-member
                confidence_matrix[row_index] = confidence_row
    elif eval_type == "Regression":
        if truth_df['labels'].dtype == 'object':
            truth_labels_matrix = truth_df['labels'].str.split().values.tolist(
            )
            for index, item in enumerate(truth_labels_matrix):
                truth_labels_matrix[index] = np.array(item, dtype=np.float64)  #pylint: disable=no-member
        else:
            truth_labels_matrix = truth_df['labels'].values

        if results_df['labels'].dtype == 'object':
            results_labels_matrix = results_df['labels'].str.split(
            ).values.tolist()
            for index, item in enumerate(results_labels_matrix):
                results_labels_matrix[index] = np.array(item, dtype=np.float64)  #pylint: disable=no-member
        else:
            results_labels_matrix = results_df['labels'].values

        if results_df['confidence'].dtype == 'object':
            confidence_matrix = results_df['confidence'].str.split(
            ).values.tolist()
            for index, item in enumerate(confidence_matrix):
                confidence_matrix[index] = np.array(item, dtype=np.float64)  #pylint: disable=no-member
        else:
            confidence_matrix = results_df['confidence'].values
    else:
        truth_labels_matrix = (truth_df['labels'].str.split().values.tolist()
                               if truth_df['labels'].dtype == 'object' else
                               truth_df['labels'].values)
        results_labels_matrix = (
            results_df['labels'].str.split().values.tolist()
            if results_df['labels'].dtype == 'object' else
            results_df['labels'].values)
        confidence_matrix = (
            results_df['confidence'].str.split().values.tolist()
            if results_df['confidence'].dtype == 'object' else
            results_df['confidence'].values)

    eval_dict = {}
    modules_cache = {}

    with open(os.path.join(os.path.dirname(__file__),
                           'defaults.json')) as reader:
        default_metrics = json.load(reader)

    metric_objects = {}
    with open(os.path.join(os.path.dirname(__file__),
                           'metrics.json')) as reader:
        metric_dict_list = json.load(reader)
    for metric_dict in metric_dict_list:
        metric_object = utils.deserialize_model(metric_dict, Metric)
        metric_objects[metric_object.package + '.' +
                       metric_object.method] = metric_object

    metrics_list = []
    for metric_name in default_metrics.get(eval_type, []):
        metric_object = metric_objects.get(metric_name, None)
        if metric_object:
            metrics_list.append(metric_object)

    for counter, metric in enumerate(metrics_list):
        logging.info(metric.package + " : " + metric.method)
        if metric.package not in modules_cache:
            module = importlib.import_module(metric.package)
            if module:
                modules_cache[metric.package] = module
            else:
                logging.warn("Cannot load " + metric.package)
                continue
        else:
            logging.debug("Loading cached module")
            module = modules_cache[metric.package]

        if hasattr(module, metric.method):
            logging.debug("Calling " + metric.method + " in " + metric.package)
            method = getattr(module, metric.method)

            args = metric.default_args or {}
            if metric.data_parameters.truth_labels:
                args[metric.data_parameters.truth_labels] = truth_labels_matrix

            if metric.data_parameters.truth_bounds and not truth_df[
                    'bounds'].hasnans:
                args[metric.data_parameters.
                     truth_bounds] = truth_df['bounds'].values

            if metric.data_parameters.prediction_labels:
                args[metric.data_parameters.
                     prediction_labels] = results_labels_matrix

            if metric.data_parameters.prediction_scores and 'confidence' in results_df and not results_df[
                    'confidence'].hasnans:
                args[metric.data_parameters.
                     prediction_scores] = confidence_matrix

            if metric.data_parameters.prediction_bounds and not results_df[
                    'bounds'].hasnans:
                args[metric.data_parameters.
                     prediction_bounds] = results_df['bounds'].values

            try:
                evalResult = method(**args)
            except Exception:
                logging.error("Something bad happened calling " +
                              metric.method,
                              exc_info=True)
            else:
                logging.debug("Result is " + str(evalResult))
                if isinstance(evalResult, np.ndarray):
                    # convert to native types
                    evalResultAsList = evalResult.tolist()
                    if eval_type == "MultilabelClassification" or eval_type == "MulticlassClassification":
                        # map labels to their values in the results
                        label_classes = label_mlb.classes_.tolist()
                        if len(evalResultAsList) == len(label_classes):
                            evalResultAsDict = {}
                            for index, label in enumerate(label_classes):
                                evalResultAsDict[str(
                                    label)] = evalResultAsList[index]
                            eval_dict[metric.method] = evalResultAsDict
                        else:
                            eval_dict[metric.method] = evalResultAsList
                    else:
                        eval_dict[metric.method] = evalResultAsList
                elif isinstance(evalResult, np.generic):
                    # convert to native type
                    evalResultAsScalar = np.asscalar(evalResult)
                    eval_dict[metric.method] = evalResultAsScalar
                elif isinstance(evalResult, tuple) or isinstance(
                        evalResult, list):
                    # kind of a cheat to cover the case where a native type has numpy elements
                    # which some scikit-learn methods inexplicably return
                    eval_dict[metric.method] = np.array(evalResult).tolist()
                else:
                    eval_dict[metric.method] = evalResult
        else:
            logging.warn(metric.method + " does not exist in " +
                         metric.package)

        logging.info("Completed metric " + str(counter + 1))

    eval_dict_json = json.dumps(eval_dict, indent=2)
    filename = evaluation_path + "/eval_results_" + str(int(
        time.time())) + ".json"
    logging.info("Writing eval results to " + filename)
    with open(filename, mode='w') as writer:
        writer.write(eval_dict_json)
コード例 #5
0
def perform_assessment(eval_type, predictions_path, ground_truth_path):
    full_predictions_path = os.path.join(predictions_path, "predictions.csv")
    logging.info("Reading results from " + full_predictions_path)
    with open(full_predictions_path) as reader:
        results_csv = reader.read()

    full_ground_truth_path = os.path.join(ground_truth_path,
                                          "ground_truth.csv")
    logging.info("Reading ground truth from " + full_ground_truth_path)
    with open(full_ground_truth_path) as reader:
        truth_csv = reader.read()

    results_df = pandas.read_csv(
        StringIO(results_csv),
        header=None,
        names=['rowid', 'labels', 'confidence', 'bounds'])
    truth_df = pandas.read_csv(StringIO(truth_csv),
                               header=None,
                               names=['rowid', 'labels', 'bounds'])

    # sort the rows by id
    results_df.sort_values(by='rowid', inplace=True)
    truth_df.sort_values(by='rowid', inplace=True)

    if eval_type == "MultilabelClassification" or eval_type == "MulticlassClassification":
        # create matrices for labels and confidence
        label_mlb = MultiLabelBinarizer()
        parsed_truth_labels = (
            truth_df['labels'].str.split().values.tolist()
            if truth_df['labels'].dtype == 'object' else np.array(
                np.transpose(np.matrix(truth_df['labels'].values))))
        parsed_results_labels = (
            results_df['labels'].str.split().values.tolist()
            if results_df['labels'].dtype == 'object' else np.array(
                np.transpose(np.matrix(results_df['labels'].values))))
        label_mlb.fit(
            np.append(parsed_truth_labels, parsed_results_labels, axis=0))
        truth_labels_matrix = label_mlb.transform(parsed_truth_labels)
        results_labels_matrix = label_mlb.transform(parsed_results_labels)

        if not results_df['confidence'].hasnans:
            parsed_confidence = (
                results_df['confidence'].str.split().values.tolist()
                if results_df['confidence'].dtype == 'object' else np.array(
                    np.transpose(np.matrix(results_df['confidence'].values))))
            confidence_matrix = np.empty(results_labels_matrix.shape)
            label_classes = label_mlb.classes_.tolist()
            for row_index, row in enumerate(parsed_results_labels):
                confidence_row = np.zeros(results_labels_matrix.shape[1])
                for col_index, col in enumerate(row):
                    label_pos = label_classes.index(col)
                    confidence_row[label_pos] = np.float64(
                        parsed_confidence[row_index][col_index])  #pylint: disable=no-member
                confidence_matrix[row_index] = confidence_row
    elif eval_type == "Regression":
        if truth_df['labels'].dtype == 'object':
            truth_labels_matrix = truth_df['labels'].str.split().values.tolist(
            )
            for index, item in enumerate(truth_labels_matrix):
                truth_labels_matrix[index] = np.array(item, dtype=np.float64)  #pylint: disable=no-member
        else:
            truth_labels_matrix = truth_df['labels'].values

        if results_df['labels'].dtype == 'object':
            results_labels_matrix = results_df['labels'].str.split(
            ).values.tolist()
            for index, item in enumerate(results_labels_matrix):
                results_labels_matrix[index] = np.array(item, dtype=np.float64)  #pylint: disable=no-member
        else:
            results_labels_matrix = results_df['labels'].values

        if results_df['confidence'].dtype == 'object':
            confidence_matrix = results_df['confidence'].str.split(
            ).values.tolist()
            for index, item in enumerate(confidence_matrix):
                confidence_matrix[index] = np.array(item, dtype=np.float64)  #pylint: disable=no-member
        else:
            confidence_matrix = results_df['confidence'].values
    else:
        truth_labels_matrix = (truth_df['labels'].str.split().values.tolist()
                               if truth_df['labels'].dtype == 'object' else
                               truth_df['labels'].values)
        results_labels_matrix = (
            results_df['labels'].str.split().values.tolist()
            if results_df['labels'].dtype == 'object' else
            results_df['labels'].values)
        confidence_matrix = (
            results_df['confidence'].str.split().values.tolist()
            if results_df['confidence'].dtype == 'object' else
            results_df['confidence'].values)

    eval_dict = {}
    modules_cache = {}

    with open(os.path.join(os.path.dirname(__file__),
                           'defaults.json')) as reader:
        default_metrics = json.load(reader)

    metric_objects = {}
    with open(os.path.join(os.path.dirname(__file__),
                           'metrics.json')) as reader:
        metric_dict_list = json.load(reader)
    for metric_dict in metric_dict_list:
        metric_object = utils.deserialize_model(metric_dict, Metric)
        metric_objects[metric_object.package + '.' +
                       metric_object.method] = metric_object

    metrics_list = []
    for metric_name in default_metrics.get(eval_type, []):
        metric_object = metric_objects.get(metric_name, None)
        if metric_object:
            metrics_list.append(metric_object)

    for counter, metric in enumerate(metrics_list):
        logging.info(metric.package + " : " + metric.method)
        if metric.package not in modules_cache:
            module = importlib.import_module(metric.package)
            if module:
                modules_cache[metric.package] = module
            else:
                logging.warn("Cannot load " + metric.package)
                continue
        else:
            logging.debug("Loading cached module")
            module = modules_cache[metric.package]

        if hasattr(module, metric.method):
            logging.debug("Calling " + metric.method + " in " + metric.package)
            method = getattr(module, metric.method)

            args = metric.default_args or {}
            if metric.data_parameters.truth_labels:
                args[metric.data_parameters.truth_labels] = truth_labels_matrix

            if metric.data_parameters.truth_bounds and not truth_df[
                    'bounds'].hasnans:
                args[metric.data_parameters.
                     truth_bounds] = truth_df['bounds'].values

            if metric.data_parameters.prediction_labels:
                args[metric.data_parameters.
                     prediction_labels] = results_labels_matrix

            if metric.data_parameters.prediction_scores and not results_df[
                    'confidence'].hasnans:
                args[metric.data_parameters.
                     prediction_scores] = confidence_matrix

            if metric.data_parameters.prediction_bounds and not results_df[
                    'bounds'].hasnans:
                args[metric.data_parameters.
                     prediction_bounds] = results_df['bounds'].values

            try:
                evalResult = method(**args)
            except Exception:
                logging.error("Something bad happened calling " +
                              metric.method,
                              exc_info=True)
            else:
                logging.debug("Result is " + str(evalResult))
                if isinstance(evalResult, np.ndarray):
                    # convert to native types
                    evalResultAsList = evalResult.tolist()
                    if eval_type == "MultilabelClassification" or eval_type == "MulticlassClassification":
                        # map labels to their values in the results
                        label_classes = label_mlb.classes_.tolist()
                        if len(evalResultAsList) == len(label_classes):
                            evalResultAsDict = {}
                            for index, label in enumerate(label_classes):
                                evalResultAsDict[label] = evalResultAsList[
                                    index]
                            eval_dict[metric.method] = evalResultAsDict
                        else:
                            eval_dict[metric.method] = evalResultAsList
                    else:
                        eval_dict[metric.method] = evalResultAsList
                elif isinstance(evalResult, np.generic):
                    # convert to native type
                    evalResultAsScalar = np.asscalar(evalResult)
                    eval_dict[metric.method] = evalResultAsScalar
                elif isinstance(evalResult, tuple) or isinstance(
                        evalResult, list):
                    # kind of a cheat to cover the case where a native type has numpy elements
                    # which some scikit-learn methods inexplicably return
                    eval_dict[metric.method] = np.array(evalResult).tolist()
                else:
                    eval_dict[metric.method] = evalResult
        else:
            logging.warn(metric.method + " does not exist in " +
                         metric.package)

        logging.info("Completed metric " + str(counter + 1))

    eval_dict_json = json.dumps(eval_dict, indent=2)
    filename = predictions_path + "/eval_results_" + str(int(
        time.time())) + ".json"
    logging.info("Writing eval results to " + filename)
    with open(filename, mode='w') as writer:
        writer.write(eval_dict_json)