def test_ada_exp_factory_no_asympt_more_steps(test_f: Callable[[float], float], ): """Test of the adaptive exponential extrapolator.""" seeded_f = apply_seed_to_func(test_f, SEED) fac = AdaExpFactory(steps=8, scale_factor=2.0, asymptote=None) fac.run_classical(seeded_f) assert np.isclose(fac.reduce(), seeded_f(0, err=0), atol=CLOSE_TOL)
def test_ada_exp_fac_with_asympt_more_steps( test_f: Callable[[float], float], avoid_log: bool ): """Test of the adaptive exponential extrapolator with more steps.""" seeded_f = apply_seed_to_func(test_f, SEED) fac = AdaExpFactory( steps=6, scale_factor=2.0, asymptote=A, avoid_log=avoid_log ) fac.iterate(seeded_f) assert np.isclose(fac.reduce(), seeded_f(0, err=0), atol=CLOSE_TOL)
def test_ada_exp_factory_with_asympt( test_f: Callable[[float], float], avoid_log: bool ): """Test of the adaptive exponential extrapolator.""" seeded_f = apply_seed_to_func(test_f, SEED) fac = AdaExpFactory( steps=3, scale_factor=2.0, asymptote=A, avoid_log=avoid_log ) # Note: iterate calls next which calls reduce, so calling fac.iterate with # an AdaExpFactory sets the optimal parameters as well. Hence we check that # the opt_params are empty before AdaExpFactory.iterate is called. assert len(fac.opt_params) == 0 fac.iterate(seeded_f) assert np.isclose(fac.reduce(), seeded_f(0, err=0), atol=CLOSE_TOL) # There are three parameters to fit for the (adaptive) exponential ansatz assert len(fac.opt_params) == 3