コード例 #1
0
ファイル: test_inference.py プロジェクト: pgysbers/mitiq
def test_ada_exp_factory_no_asympt_more_steps(test_f: Callable[[float],
                                                               float], ):
    """Test of the adaptive exponential extrapolator."""
    seeded_f = apply_seed_to_func(test_f, SEED)
    fac = AdaExpFactory(steps=8, scale_factor=2.0, asymptote=None)
    fac.run_classical(seeded_f)
    assert np.isclose(fac.reduce(), seeded_f(0, err=0), atol=CLOSE_TOL)
コード例 #2
0
ファイル: test_inference.py プロジェクト: yaoyongxin/mitiq
def test_ada_exp_fac_with_asympt_more_steps(
    test_f: Callable[[float], float], avoid_log: bool
):
    """Test of the adaptive exponential extrapolator with more steps."""
    seeded_f = apply_seed_to_func(test_f, SEED)
    fac = AdaExpFactory(
        steps=6, scale_factor=2.0, asymptote=A, avoid_log=avoid_log
    )
    fac.iterate(seeded_f)
    assert np.isclose(fac.reduce(), seeded_f(0, err=0), atol=CLOSE_TOL)
コード例 #3
0
ファイル: test_inference.py プロジェクト: yaoyongxin/mitiq
def test_ada_exp_factory_with_asympt(
    test_f: Callable[[float], float], avoid_log: bool
):
    """Test of the adaptive exponential extrapolator."""
    seeded_f = apply_seed_to_func(test_f, SEED)
    fac = AdaExpFactory(
        steps=3, scale_factor=2.0, asymptote=A, avoid_log=avoid_log
    )
    # Note: iterate calls next which calls reduce, so calling fac.iterate with
    # an AdaExpFactory sets the optimal parameters as well. Hence we check that
    # the opt_params are empty before AdaExpFactory.iterate is called.
    assert len(fac.opt_params) == 0
    fac.iterate(seeded_f)
    assert np.isclose(fac.reduce(), seeded_f(0, err=0), atol=CLOSE_TOL)

    # There are three parameters to fit for the (adaptive) exponential ansatz
    assert len(fac.opt_params) == 3