コード例 #1
0
ファイル: test_inference.py プロジェクト: pgysbers/mitiq
def test_too_few_points_for_polyfit_warning():
    """Test that the correct warning is raised if data is not enough to fit."""
    fac = PolyFactory(X_VALS, order=2)
    fac._instack = [
        {
            "scale_factor": 1.0,
            "shots": 100
        },
        {
            "scale_factor": 2.0,
            "shots": 100
        },
    ]
    fac._outstack = [1.0, 2.0]
    with warns(
            ExtrapolationWarning,
            match=r"The extrapolation fit may be ill-conditioned.",
    ):
        fac.reduce()
    # test also the static "extrapolate" method.
    with warns(
            ExtrapolationWarning,
            match=r"The extrapolation fit may be ill-conditioned.",
    ):
        PolyFactory.extrapolate([1.0, 2.0], [1.0, 2.0], order=2)
コード例 #2
0
ファイル: test_inference.py プロジェクト: sid1993/mitiq
def test_params_cov_and_zne_std():
    """Tests the variance of the parametes and of the zne are produced."""
    x_values = [0, 0, 1]
    y_values = [-1, 1, 0]
    zne_limit = PolyFactory.extrapolate(x_values, y_values, order=1)
    assert np.isclose(zne_limit, 0.0, atol=1.0e-4)
    (
        zne_limit,
        zne_std,
        opt_params,
        params_cov,
        zne_curve,
    ) = PolyFactory.extrapolate(x_values, y_values, order=1, full_output=True)
    assert len(opt_params) == 2
    assert np.isclose(zne_limit, 0.0)
    assert np.isclose(0.0, opt_params[1])
    assert np.isclose(0.0, opt_params[0])
    assert np.allclose(params_cov, [[3.0, -1.0], [-1.0, 1.0]])
    assert np.isclose(zne_std, 1.0)
    assert np.isclose(zne_curve(0), 0.0)
    assert np.isclose(zne_curve(0.5), 0.0)
コード例 #3
0
ファイル: test_inference.py プロジェクト: sid1993/mitiq
def test_full_output_keyword_cov_std():
    """Tests the full_output keyword in extrapolate method."""
    zne_limit = PolyFactory.extrapolate([1, 2, 3], [1, 4, 9], order=2)
    assert np.isclose(zne_limit, 0.0)
    (
        zne_limit,
        zne_std,
        opt_params,
        params_cov,
        zne_curve,
    ) = PolyFactory.extrapolate(
        [1, 2, 3], [1, 4, 9], order=2, full_output=True
    )

    assert len(opt_params) == 3
    assert np.isclose(zne_limit, 0.0)
    assert np.isclose(0.0, opt_params[1])
    assert np.isclose(1.0, opt_params[0])
    assert params_cov is None
    assert zne_std is None
    assert np.isclose(zne_curve(0), 0.0)
    assert np.isclose(zne_curve(2), 4.0)
    assert np.isclose(zne_curve(3), 9.0)
コード例 #4
0
ファイル: test_inference.py プロジェクト: BoxiLi/mitiq
def test_poly_extr():
    """Test of polynomial extrapolator."""
    # test (order=1)
    fac = PolyFactory(X_VALS, order=1)
    fac.run_classical(f_lin)
    assert np.isclose(fac.reduce(), f_lin(0, err=0), atol=CLOSE_TOL)
    # test that, for some non-linear functions,
    # order=1 is bad while order=2 is better.
    seeded_f = apply_seed_to_func(f_non_lin, SEED)
    fac = PolyFactory(X_VALS, order=1)
    fac.run_classical(seeded_f)
    assert not np.isclose(fac.reduce(), seeded_f(0, err=0), atol=NOT_CLOSE_TOL)
    seeded_f = apply_seed_to_func(f_non_lin, SEED)
    fac = PolyFactory(X_VALS, order=2)
    fac.run_classical(seeded_f)
    zne_value = fac.reduce()
    assert np.isclose(fac.reduce(), seeded_f(0, err=0), atol=CLOSE_TOL)
    exp_vals = fac.get_expectation_values()
    assert np.isclose(fac.extrapolate(X_VALS, exp_vals, order=2), zne_value)
    assert np.isclose(
        fac.extrapolate(X_VALS, exp_vals, order=2, full_output=True)[0],
        zne_value,
    )