def sampler_speedometer(): """ Tests average sample speed of different samplers in different configurations :returns: Just prints info :rtype: None """ gaussian = Gaussian() np.random.seed(2015) pot = ProductOfT(ndims=36,nbasis=36) mjhmc_gauss = MarkovJumpHMC(distribution=gaussian) mjhmc_gauss_nr = MarkovJumpHMC(distribution=gaussian, resample=False) control_gauss = ControlHMC(distribution=gaussian) mjhmc_pot = MarkovJumpHMC(distribution=pot) mjhmc_pot_nr = MarkovJumpHMC(distribution=pot, resample=False) control_pot = ControlHMC(distribution=pot) m_g_r_avg = time_per_sample(mjhmc_gauss) m_g_nr_avg = time_per_sample(mjhmc_gauss_nr) c_g_avg = time_per_sample(control_gauss) m_p_r_avg = time_per_sample(mjhmc_pot) m_p_nr_avg = time_per_sample(mjhmc_pot_nr) c_p_avg = time_per_sample(control_pot) print "Average times per samples..." print "resampled MJHMC numpy gradient: {}".format(m_g_r_avg) print "not resampled MJHMC numpy gradient: {}".format(m_g_nr_avg) print "control HMC numpy gradient: {}".format(c_g_avg) print "resampled MJHMC theano gradient: {}".format(m_p_r_avg) print "not resampled MJHMC theano gradient: {}".format(m_p_nr_avg) print "control HMC theano gradient: {}".format(c_p_avg)
def generate_figure_samples(samples_per_frame, n_frames, burnin = int(1e4)): """ Generates the figure :param samples_per_frame: number of sample steps between each frame :param n_frames: number of frames to draw :returns: None :rtype: None """ n_samples = samples_per_frame * n_frames ndims = 36 nbasis = 72 rand_val = rand(ndims,nbasis/2,density=0.25) W = np.concatenate([rand_val.toarray(), -rand_val.toarray()],axis=1) logalpha = np.random.randn(nbasis, 1) poe = ProductOfT(nbatch=1, W=W, logalpha=logalpha) ## NUTS uses a different number of grad evals for each update step!! ## makes it very hard to compare against others w/ same number of update steps # # NUTS # print "NUTS" # nuts_init = poe.Xinit[:, 0] # nuts_samples = nuts6(poe.reset(), n_samples, nuts_burnin, nuts_init)[0] # nuts_frames = [nuts_samples[f_idx * samples_per_frame, :] for f_idx in xrange(0, n_frames)] # x_init = nuts_samples[0, :].reshape(ndims, 1) ## burnin print "MJHMC burnin" x_init = poe.Xinit #[:, [0]] mjhmc = MarkovJumpHMC(distribution=poe.reset(), **mjhmc_params) mjhmc.state = HMCState(x_init.copy(), mjhmc) mjhmc_samples = mjhmc.sample(burnin) print mjhmc_samples.shape x_init = mjhmc_samples[:, [0]] # control HMC print "Control" hmc = ControlHMC(distribution=poe.reset(), **control_params) hmc.state = HMCState(x_init.copy(), hmc) hmc_samples = hmc.sample(n_samples) hmc_frames = [hmc_samples[:, f_idx * samples_per_frame].copy() for f_idx in xrange(0, n_frames)] # MJHMC print "MJHMC" mjhmc = MarkovJumpHMC(distribution=poe.reset(), resample=False, **mjhmc_params) mjhmc.state = HMCState(x_init.copy(), mjhmc) mjhmc_samples = mjhmc.sample(n_samples) mjhmc_frames = [mjhmc_samples[:, f_idx * samples_per_frame].copy() for f_idx in xrange(0, n_frames)] print mjhmc.r_count, hmc.r_count print mjhmc.l_count, hmc.l_count print mjhmc.f_count, hmc.f_count print mjhmc.fl_count, hmc.fl_count frames = [mjhmc_frames, hmc_frames] names = ['MJHMC', 'ControlHMC'] frame_grads = [f_idx * samples_per_frame for f_idx in xrange(0, n_frames)] return frames, names, frame_grads
def main(job_id, params): ndims = 100 nbasis = 100 rand_val = rand(ndims, nbasis / 2, density=0.25) print "job id: {}, params: {}".format(job_id, params) return obj_func(MarkovJumpHMC, ProductOfT(nbatch=25, ndims=ndims, nbasis=nbasis), job_id, **params)
def main(job_id, params): ndims = 256 nbasis = 72 rand_val = rand(ndims,nbasis/2,density=0.25) W = np.concatenate([rand_val.toarray(), -rand_val.toarray()],axis=1) logalpha = np.random.randn(nbasis, 1) print "job id: {}, params: {}".format(job_id, params) return obj_func(ControlHMC, ProductOfT(nbatch=250,ndims=ndims,nbasis=nbasis, W=W, logalpha=logalpha), job_id, **params)
def main(job_id, params): ndims = 36 nbasis = 36 print "job id: {}, params: {}".format(job_id, params) weights, lognu = init_weights(ndims, nbasis) return obj_func( ControlHMC, ProductOfT(nbatch=25, ndims=ndims, nbasis=nbasis, lognu=lognu, W=weights), job_id, **params)
def ac_plot(n_samples=5000, **kwargs): """ Plots the autocorrelation for the best found parameters of the 36 dimensional product of experts :returns: None :rtype: None """ from mjhmc.figures.ac_fig import plot_best ndims = 36 nbasis = 36 np.random.seed(2015) poe = ProductOfT(nbatch=25,ndims=ndims,nbasis=nbasis) plot_best(poe, num_steps=n_samples, update_params=False, **kwargs)
def check_variance(): """ Simple benchmark that estimates the variance a ton of times and writes to file the results :returns: Nothing :rtype: None """ from mjhmc.misc.gen_mj_init import generate_initialization np.random.seed(2015) poe = ProductOfT(nbatch=1000, ndims=36, nbasis=36) var_estimates = [] for trial_idx in xrange(100): _, var_estimate = generate_initialization(poe.reset()) var_estimates.append(var_estimate) with open("var_log.txt", 'a') as vlog: vlog.write("Trial {} variance {}\n".format(trial_idx, var_estimate)) vlog.write("Variance of variance estimates so far {}".format(np.var(var_estimates)))
from mjhmc.figures import ac_fig from mjhmc.misc.distributions import ProductOfT import numpy as np np.random.seed(2015) #Search for best hyper-parameters #Parameters for the distribution object ndims = 36 nbasis = 36 nbatch = 25 POT = ProductOfT(nbasis=nbasis,nbatch=nbatch,ndims=ndims) #Run a comparison ac_fig.plot_best(POT,num_steps=100000,update_params=True)