コード例 #1
0
ファイル: shiftnet_mb.py プロジェクト: surban/ml
def generate_new_data():
    global trn_inputs, trn_shifts, trn_targets
    #print "Generating new data..."
    trn_inputs, trn_shifts, trn_targets = \
        generate_data(cfg.x_len, cfg.s_len, cfg.n_batch)
    if use_id_data:
        trn_targets = trn_inputs.copy()
コード例 #2
0
ファイル: shiftnet.py プロジェクト: surban/ml
loss = T.mean((fsn.output(x,s) - t)**2)

if profile:
    f_loss = function(inputs=[ps.flat,x,s,t], outputs=loss, mode=profmode, name='f_loss')
    f_dloss = function(inputs=[ps.flat,x,s,t], outputs=T.grad(loss, ps.flat), mode=profmode, name='f_dloss')
else:
    f_loss = function(inputs=[ps.flat,x,s,t], outputs=loss)
    f_dloss = function(inputs=[ps.flat,x,s,t], outputs=T.grad(loss, ps.flat))

f_trn_loss = lambda p: f_loss(p, trn_inputs, trn_shifts, trn_targets)
f_trn_dloss = lambda p: f_dloss(p, trn_inputs, trn_shifts, trn_targets)

# generate data
print "Generating data..."
trn_inputs, trn_shifts, trn_targets = generate_data(cfg.x_len, cfg.s_len, cfg.n_samples)
val_inputs, val_shifts, val_targets = generate_data(cfg.x_len, cfg.s_len, cfg.n_samples)
tst_inputs, tst_shifts, tst_targets = generate_data(cfg.x_len, cfg.s_len, cfg.n_samples)
print "Done."

# optimizer
if cfg.optimizer == 'lbfgs':
    opt = climin.Lbfgs(ps.data, f_trn_loss, f_trn_dloss)
elif cfg.optimizer == 'rprop':
    opt = climin.Rprop(ps.data, f_trn_dloss)
elif cfg.optimizer == 'rmsprop':
    opt = climin.RmsProp(ps.data, f_trn_dloss, 
                         steprate=cfg.steprate[0], 
                         momentum=cfg.momentum)
elif cfg.optimizer == 'gradientdescent':
    opt = climin.GradientDescent(ps.data, f_trn_dloss, 
コード例 #3
0
ファイル: shiftnet_extend.py プロジェクト: surban/ml
def generate_data(n_samples):
    if use_base_data:
        inputs, shifts, targets = generate_base_data(n_samples)
    else:
        inputs, shifts, targets = generate_data(cfg.x_len, cfg.s_len, n_samples)
    return inputs, shifts, targets
コード例 #4
0
ファイル: shiftnet_extend.py プロジェクト: surban/ml
def generate_base_data(n_samples):
    inputs, shifts, targets = generate_data(base_x_len, base_s_len, n_samples)
    inputs = gp.dot(doubling_matrix(base_x_len).T, inputs)
    targets = gp.dot(doubling_matrix(base_x_len).T, targets)
    shifts = gp.dot(shift_doubling_matrix(base_s_len).T, shifts)
    return inputs, shifts, targets
コード例 #5
0
ファイル: shiftnet_extend.py プロジェクト: surban/ml
def generate_new_training_data():
    global trn_inputs, trn_shifts, trn_targets
    print "Generating new data..."
    trn_inputs, trn_shifts, trn_targets = generate_data(cfg.n_batch)