コード例 #1
0
ファイル: mdnrnn_gym.py プロジェクト: zzs4026/ReAgent
def create_trainer(
    params: OpenAiGymParameters, env: OpenAIGymEnvironment, use_gpu: bool
):
    assert params.mdnrnn is not None
    assert params.run_details.max_steps is not None
    mdnrnn_params = params.mdnrnn
    mdnrnn_net = MemoryNetwork(
        state_dim=env.state_dim,
        action_dim=env.action_dim,
        num_hiddens=mdnrnn_params.hidden_size,
        num_hidden_layers=mdnrnn_params.num_hidden_layers,
        num_gaussians=mdnrnn_params.num_gaussians,
    )
    if use_gpu:
        mdnrnn_net = mdnrnn_net.cuda()

    cum_loss_hist_len = (
        params.run_details.num_train_episodes
        * params.run_details.max_steps
        // mdnrnn_params.minibatch_size
    )
    trainer = MDNRNNTrainer(
        mdnrnn_network=mdnrnn_net, params=mdnrnn_params, cum_loss_hist=cum_loss_hist_len
    )
    return trainer
コード例 #2
0
def create_world_model_trainer(
    env: OpenAIGymEnvironment, mdnrnn_params: MDNRNNParameters, use_gpu: bool
) -> MDNRNNTrainer:
    mdnrnn_net = MemoryNetwork(
        state_dim=env.state_dim,
        action_dim=env.action_dim,
        num_hiddens=mdnrnn_params.hidden_size,
        num_hidden_layers=mdnrnn_params.num_hidden_layers,
        num_gaussians=mdnrnn_params.num_gaussians,
    )
    if use_gpu:
        mdnrnn_net = mdnrnn_net.cuda()
    mdnrnn_trainer = MDNRNNTrainer(mdnrnn_network=mdnrnn_net, params=mdnrnn_params)
    return mdnrnn_trainer
コード例 #3
0
def create_trainer(params: Dict, env: OpenAIGymEnvironment, use_gpu: bool):
    mdnrnn_params = MDNRNNParameters(**params["mdnrnn"])
    mdnrnn_net = MemoryNetwork(
        state_dim=env.state_dim,
        action_dim=env.action_dim,
        num_hiddens=mdnrnn_params.hidden_size,
        num_hidden_layers=mdnrnn_params.num_hidden_layers,
        num_gaussians=mdnrnn_params.num_gaussians,
    )
    if use_gpu and torch.cuda.is_available():
        mdnrnn_net = mdnrnn_net.cuda()

    cum_loss_hist_len = (params["run_details"]["num_train_episodes"] *
                         params["run_details"]["max_steps"] //
                         mdnrnn_params.minibatch_size)
    trainer = MDNRNNTrainer(mdnrnn_network=mdnrnn_net,
                            params=mdnrnn_params,
                            cum_loss_hist=cum_loss_hist_len)
    return trainer
コード例 #4
0
ファイル: test_mdnrnn.py プロジェクト: joshrose/Horizon
    def _test_mdnrnn_simulate_world(self, use_gpu=False):
        num_epochs = 300
        num_episodes = 400
        batch_size = 200
        action_dim = 2
        seq_len = 5
        state_dim = 2
        simulated_num_gaussians = 2
        mdrnn_num_gaussians = 2
        simulated_num_hidden_layers = 1
        simulated_num_hiddens = 3
        mdnrnn_num_hidden_layers = 1
        mdnrnn_num_hiddens = 10
        adam_lr = 0.01

        replay_buffer = MDNRNNMemoryPool(max_replay_memory_size=num_episodes)
        swm = SimulatedWorldModel(
            action_dim=action_dim,
            state_dim=state_dim,
            num_gaussians=simulated_num_gaussians,
            lstm_num_hidden_layers=simulated_num_hidden_layers,
            lstm_num_hiddens=simulated_num_hiddens,
        )

        possible_actions = torch.eye(action_dim)
        for _ in range(num_episodes):
            cur_state_mem = torch.zeros((seq_len, state_dim))
            next_state_mem = torch.zeros((seq_len, state_dim))
            action_mem = torch.zeros((seq_len, action_dim))
            reward_mem = torch.zeros(seq_len)
            not_terminal_mem = torch.zeros(seq_len)
            next_mus_mem = torch.zeros(
                (seq_len, simulated_num_gaussians, state_dim))

            swm.init_hidden(batch_size=1)
            next_state = torch.randn((1, 1, state_dim))
            for s in range(seq_len):
                cur_state = next_state
                action = possible_actions[np.random.randint(action_dim)].view(
                    1, 1, action_dim)
                next_mus, reward = swm(action, cur_state)

                not_terminal = 1
                if s == seq_len - 1:
                    not_terminal = 0

                # randomly draw for next state
                next_pi = torch.ones(
                    simulated_num_gaussians) / simulated_num_gaussians
                index = Categorical(next_pi).sample((1, )).long().item()
                next_state = next_mus[0, 0, index].view(1, 1, state_dim)

                cur_state_mem[s] = cur_state.detach()
                action_mem[s] = action
                reward_mem[s] = reward.detach()
                not_terminal_mem[s] = not_terminal
                next_state_mem[s] = next_state.detach()
                next_mus_mem[s] = next_mus.detach()

            replay_buffer.insert_into_memory(cur_state_mem, action_mem,
                                             next_state_mem, reward_mem,
                                             not_terminal_mem)

        num_batch = num_episodes // batch_size
        mdnrnn_params = MDNRNNParameters(
            hidden_size=mdnrnn_num_hiddens,
            num_hidden_layers=mdnrnn_num_hidden_layers,
            minibatch_size=batch_size,
            learning_rate=adam_lr,
            num_gaussians=mdrnn_num_gaussians,
        )
        mdnrnn_net = MemoryNetwork(
            state_dim=state_dim,
            action_dim=action_dim,
            num_hiddens=mdnrnn_params.hidden_size,
            num_hidden_layers=mdnrnn_params.num_hidden_layers,
            num_gaussians=mdnrnn_params.num_gaussians,
        )
        if use_gpu:
            mdnrnn_net = mdnrnn_net.cuda()
        trainer = MDNRNNTrainer(mdnrnn_network=mdnrnn_net,
                                params=mdnrnn_params,
                                cum_loss_hist=num_batch)

        for e in range(num_epochs):
            for i in range(num_batch):
                training_batch = replay_buffer.sample_memories(
                    batch_size, use_gpu=use_gpu, batch_first=True)
                losses = trainer.train(training_batch, batch_first=True)
                logger.info(
                    "{}-th epoch, {}-th minibatch: \n"
                    "loss={}, bce={}, gmm={}, mse={} \n"
                    "cum loss={}, cum bce={}, cum gmm={}, cum mse={}\n".format(
                        e,
                        i,
                        losses["loss"],
                        losses["bce"],
                        losses["gmm"],
                        losses["mse"],
                        np.mean(trainer.cum_loss),
                        np.mean(trainer.cum_bce),
                        np.mean(trainer.cum_gmm),
                        np.mean(trainer.cum_mse),
                    ))

                if (np.mean(trainer.cum_loss) < 0
                        and np.mean(trainer.cum_gmm) < -3.0
                        and np.mean(trainer.cum_bce) < 0.6
                        and np.mean(trainer.cum_mse) < 0.2):
                    return

        assert False, "losses not reduced significantly during training"