plt.ylabel('Microchip Test 2') show() # Initialization # Load Data # The first two columns contains the X values and the third column # contains the label (y). data = pd.read_csv('ex2data2.txt', header=None, names=[1,2,3]) X = data[[1, 2]] y = data[[3]] plotData(X.values, y.values) # Labels and Legend plt.xlabel('Microchip Test 1') plt.ylabel('Microchip Test 2') show() raw_input("Program paused. Press Enter to continue...") # =========== Part 1: Regularized Logistic Regression ============ # Add Polynomial Features # Note that mapFeature also adds a column of ones for us, so the intercept # term is handled X = X.apply(mapFeature, axis=1)
plt.xlabel('Microchip Test 1') plt.ylabel('Microchip Test 2') # Initialization # Load Data # The first two columns contains the X values and the third column # contains the label (y). data = pd.read_csv('ex2data2.txt', header=None, names=[1,2,3]) X = data[[1, 2]] y = data[[3]] plotData(X.values, y.values) # Labels and Legend plt.xlabel('Microchip Test 1') plt.ylabel('Microchip Test 2') # =========== Part 1: Regularized Logistic Regression ============ # Add Polynomial Features # Note that mapFeature also adds a column of ones for us, so the intercept # term is handled X = X.apply(mapFeature, axis=1) # Initialize fitting parameters
# from ml import plotData, plotDecisionBoundary # Load Data # The first two columns contains the exam scores and the third column # contains the label. data = np.loadtxt('C:\Users\HTDA\Coursera-Stanford-ML-Python-local\ex2\ex2data1.txt', delimiter=',') X = data[:, 0:2] y = data[:, 2] # ==================== Part 1: Plotting ==================== print 'Plotting data with + indicating (y = 1) examples and o indicating (y = 0) examples.' plotData(X, y) plt.legend(['Admitted', 'Not admitted'], loc='upper right', shadow=True, fontsize='x-large', numpoints=1) plt.xlabel('Exam 1 score') plt.ylabel('Exam 2 score') # # ============ Part 2: Compute Cost and Gradient ============ # # Setup the data matrix appropriately, and add ones for the intercept term m, n = X.shape # Add intercept term to x and X_test X = np.concatenate((np.ones((m, 1)), X), axis=1) # Initialize fitting parameters
from ml import plotData, plotDecisionBoundary # Load Data # The first two columns contains the exam scores and the third column # contains the label. data = np.loadtxt('ex2data1.txt', delimiter=',') X = data[:, 0:2] y = data[:, 2] # ==================== Part 1: Plotting ==================== print( 'Plotting data with + indicating (y = 1) examples and o indicating (y = 0) examples.' ) plotData(X, y) plt.legend(['Admitted', 'Not admitted'], loc='upper right', shadow=True, fontsize='x-large', numpoints=1) plt.xlabel('Exam 1 score') plt.ylabel('Exam 2 score') plt.show() input("Program paused. Press Enter to continue...") # # ============ Part 2: Compute Cost and Gradient ============ # # Setup the data matrix appropriately, and add ones for the intercept term m, n = X.shape
from predict import predict from ml import plotData from ml import mapFeature from ml import plotDecisionBoundary import numpy as np from scipy.optimize import fmin_bfgs ## Load Data # The first two columns contains the exam scores and the third column # contains the label. data = np.loadtxt('ex2data2.txt', delimiter=",") X = data[:, :2] y = data[:, 2] plt, p1, p2 = plotData(X, y) # # Labels and Legend plt.xlabel('Microchip Test 1') plt.ylabel('Microchip Test 2') plt.legend((p1, p2), ('y = 1', 'y = 0'), numpoints=1, handlelength=0) plt.show( block=False ) # prevents having to close the graph to move forward with ex2_reg.py raw_input('Program paused. Press enter to continue.\n') ## =========== Part 1: Regularized Logistic Regression ============ # In this part, you are given a dataset with data points that are not # linearly separable. However, you would still like to use logistic