コード例 #1
0
ファイル: test_cli_utils.py プロジェクト: prodigyfinance/ml2p
 def test_mk_training_job_with_vpc_config(self, prj):
     prj.train["vpc_config"] = {
         "security_groups": ["sg-1"],
         "subnets": ["net-2"]
     }
     training_job_cfg = cli_utils.mk_training_job(prj, "training-job-1",
                                                  "dataset-1")
     assert training_job_cfg["VpcConfig"] == {
         "SecurityGroupIds": ["sg-1"],
         "Subnets": ["net-2"],
     }
コード例 #2
0
ファイル: test_cli_utils.py プロジェクト: prodigyfinance/ml2p
 def test_mk_training_job(self, prj):
     training_job_cfg = cli_utils.mk_training_job(prj, "training-job-1",
                                                  "dataset-1")
     assert training_job_cfg == {
         "TrainingJobName":
         "modelling-project-training-job-1",
         "AlgorithmSpecification": {
             "TrainingImage":
             ("123456789012.dkr.ecr.eu-west-1"
              ".amazonaws.com/modelling-project-sagemaker:latest"),
             "TrainingInputMode":
             "File",
         },
         "EnableNetworkIsolation":
         True,
         "HyperParameters": {
             "ML2P_ENV.ML2P_PROJECT":
             '"modelling-project"',
             "ML2P_ENV.ML2P_S3_URL":
             ('"s3://prodigyfinance-modelling-project-sagemaker-production/"'
              ),
         },
         "InputDataConfig": [{
             "ChannelName": "training",
             "DataSource": {
                 "S3DataSource": {
                     "S3DataType":
                     "S3Prefix",
                     "S3Uri":
                     "s3://prodigyfinance-modelling-project-"
                     "sagemaker-production/datasets/dataset-1",
                 }
             },
         }],
         "OutputDataConfig": {
             "S3OutputPath":
             "s3://prodigyfinance-modelling-project"
             "-sagemaker-production/models/"
         },
         "ResourceConfig": {
             "InstanceCount": 1,
             "InstanceType": "ml.m5.2xlarge",
             "VolumeSizeInGB": 20,
         },
         "RoleArn":
         "arn:aws:iam::111111111111:role/modelling-project",
         "StoppingCondition": {
             "MaxRuntimeInSeconds": 60 * 60
         },
         "Tags": [{
             "Key": "ml2p-project",
             "Value": "modelling-project"
         }],
     }
コード例 #3
0
ファイル: test_cli_utils.py プロジェクト: prodigyfinance/ml2p
 def test_mk_training_job_with_model_type(self, prj):
     prj.models["model-type-1"] = "my.pkg.model"
     training_job_cfg = cli_utils.mk_training_job(prj, "training-job-1",
                                                  "dataset-1",
                                                  "model-type-1")
     assert training_job_cfg["HyperParameters"] == {
         "ML2P_ENV.ML2P_MODEL_CLS":
         '"my.pkg.model"',
         "ML2P_ENV.ML2P_PROJECT":
         '"modelling-project"',
         "ML2P_ENV.ML2P_S3_URL":
         ('"s3://prodigyfinance-modelling-project-sagemaker-production/"'),
     }
コード例 #4
0
ファイル: test_cli_utils.py プロジェクト: prodigyfinance/ml2p
 def test_mk_training_job_with_missing_model_type(self, prj):
     with pytest.raises(KeyError) as err:
         cli_utils.mk_training_job(prj, "training-job-1", "dataset-1",
                                   "model-type-1")
     assert str(err.value) == "'model-type-1'"