コード例 #1
0
def _layerwise_water_path_to_content(layerwise_path_matrix_kg_m02,
                                     heights_m_agl):
    """Converts profile of layerwise water path to profile of water content.

    E = number of examples
    H = number of heights

    :param layerwise_path_matrix_kg_m02: E-by-H numpy array of layerwise water
        paths (kg m^-2).  "Layerwise" means that the value in each grid cell is
        only the water path through that grid cell, not integrated over multiple
        grid cells.
    :param heights_m_agl: length-H numpy array with heights of grid-cell centers
        (metres above ground level).
    :return: water_content_matrix_kg_m03: E-by-H numpy array of water contents
        (kg m^-3).
    """

    edge_heights_m_agl = example_utils.get_grid_cell_edges(heights_m_agl)
    grid_cell_widths_metres = example_utils.get_grid_cell_widths(
        edge_heights_m_agl)

    num_examples = layerwise_path_matrix_kg_m02.shape[0]
    num_heights = layerwise_path_matrix_kg_m02.shape[1]

    grid_cell_width_matrix_metres = numpy.reshape(grid_cell_widths_metres,
                                                  (1, num_heights))
    grid_cell_width_matrix_metres = numpy.repeat(grid_cell_width_matrix_metres,
                                                 repeats=num_examples,
                                                 axis=0)

    return layerwise_path_matrix_kg_m02 / grid_cell_width_matrix_metres
コード例 #2
0
def _water_content_to_layerwise_path(water_content_matrix_kg_m03,
                                     heights_m_agl):
    """Converts profile of water content to layerwise water path.

    This method is the inverse of `_layerwise_water_path_to_content`.

    :param water_content_matrix_kg_m03: See doc for
        `_layerwise_water_path_to_content`.
    :param heights_m_agl: Same.
    :return: layerwise_path_matrix_kg_m02: Same.
    """

    edge_heights_m_agl = example_utils.get_grid_cell_edges(heights_m_agl)
    grid_cell_widths_metres = example_utils.get_grid_cell_widths(
        edge_heights_m_agl)

    num_examples = water_content_matrix_kg_m03.shape[0]
    num_heights = water_content_matrix_kg_m03.shape[1]

    grid_cell_width_matrix_metres = numpy.reshape(grid_cell_widths_metres,
                                                  (1, num_heights))
    grid_cell_width_matrix_metres = numpy.repeat(grid_cell_width_matrix_metres,
                                                 repeats=num_examples,
                                                 axis=0)

    return water_content_matrix_kg_m03 * grid_cell_width_matrix_metres
コード例 #3
0
    def test_get_grid_cell_edges(self):
        """Ensures correct output from get_grid_cell_edges."""

        these_edge_heights_m_agl = (
            example_utils.get_grid_cell_edges(CENTER_HEIGHTS_M_AGL))
        self.assertTrue(
            numpy.allclose(these_edge_heights_m_agl,
                           EDGE_HEIGHTS_M_AGL,
                           atol=TOLERANCE))
コード例 #4
0
def flux_increment_loss_not_dense(up_flux_inc_channel_index,
                                  down_flux_inc_channel_index,
                                  net_flux_increment_weight,
                                  total_net_flux_weight, use_magnitude_weight,
                                  heights_m_agl):
    """Loss function for non-dense net that predict flux increments.

    "Flux increments" are DF_down / Dz and DF_up / Dz.

    :param up_flux_inc_channel_index: Channel index for upwelling-flux increment
        (DF_up).
    :param down_flux_inc_channel_index: Channel index for downwelling-flux
        increment (DF_down).
    :param net_flux_increment_weight: Weight for mean squared error (MSE)
        between predicted and actual net-flux increments (DF_net / Dz).
    :param total_net_flux_weight: Weight for MSE between predicted and actual
        net fluxes (F_net).
    :param use_magnitude_weight: Boolean flag.  If True, the loss for each
        element (each example at each height) will be weighted by the magnitude
        of DF_net / Dz (max between predicted and actual).
    :param heights_m_agl: 1-D numpy array of heights in profile (metres above
        ground level).
    :return: loss: Loss function (defined below).
    """

    # TODO(thunderhoser): This loss function should be used only when there are
    # two target variables, unnormalized downwelling- and upwelling-flux
    # increments.

    # TODO(thunderhoser): In the future, I may want to use fictitious Dp
    # (pressure increment) to convert fluxes to heating rates, then directly
    # penalize heating rates.

    error_checking.assert_is_integer(up_flux_inc_channel_index)
    error_checking.assert_is_geq(up_flux_inc_channel_index, 0)
    error_checking.assert_is_integer(down_flux_inc_channel_index)
    error_checking.assert_is_geq(down_flux_inc_channel_index, 0)

    assert up_flux_inc_channel_index != down_flux_inc_channel_index

    error_checking.assert_is_geq(net_flux_increment_weight, 0.)
    error_checking.assert_is_geq(total_net_flux_weight, 0.)
    error_checking.assert_is_greater(
        net_flux_increment_weight + total_net_flux_weight, 0.)

    error_checking.assert_is_boolean(use_magnitude_weight)

    edge_heights_m_agl = example_utils.get_grid_cell_edges(heights_m_agl)
    grid_cell_widths_metres = (
        example_utils.get_grid_cell_widths(edge_heights_m_agl))

    num_heights = len(heights_m_agl)
    grid_cell_width_matrix_metres = numpy.reshape(grid_cell_widths_metres,
                                                  (1, num_heights))

    print(grid_cell_width_matrix_metres)

    def loss(target_tensor, prediction_tensor):
        """Computes loss.

        :param target_tensor: Tensor of target (actual) values.
        :param prediction_tensor: Tensor of predicted values.
        :return: loss: Scalar.
        """

        target_net_flux_inc_tensor_w_m03 = (
            target_tensor[..., down_flux_inc_channel_index] -
            target_tensor[..., up_flux_inc_channel_index])
        predicted_net_flux_inc_tensor_w_m03 = (
            prediction_tensor[..., down_flux_inc_channel_index] -
            prediction_tensor[..., up_flux_inc_channel_index])
        loss = net_flux_increment_weight * (
            predicted_net_flux_inc_tensor_w_m03 -
            target_net_flux_inc_tensor_w_m03)**2

        target_net_flux_tensor_w_m02 = K.cumsum(
            target_net_flux_inc_tensor_w_m03 * grid_cell_width_matrix_metres,
            axis=1)
        predicted_net_flux_tensor_w_m02 = K.cumsum(
            predicted_net_flux_inc_tensor_w_m03 *
            grid_cell_width_matrix_metres,
            axis=1)
        loss += total_net_flux_weight * (predicted_net_flux_tensor_w_m02 -
                                         target_net_flux_tensor_w_m02)**2

        if use_magnitude_weight:
            loss = loss * K.maximum(target_net_flux_inc_tensor_w_m03,
                                    predicted_net_flux_inc_tensor_w_m03)

        return K.mean(loss)

    return loss
コード例 #5
0
def flux_increment_loss_dense(first_up_flux_inc_index,
                              first_down_flux_inc_index,
                              net_flux_increment_weight, total_net_flux_weight,
                              use_magnitude_weight, heights_m_agl):
    """Loss function for dense net that predict flux increments.

    :param first_up_flux_inc_index: Array index for upwelling-flux increment at
        lowest height.
    :param first_down_flux_inc_index: Array index for downwelling-flux increment
        at lowest height.
    :param net_flux_increment_weight: See doc for
        `flux_increment_loss_not_dense`.
    :param total_net_flux_weight: Same.
    :param use_magnitude_weight: Same.
    :param heights_m_agl: Same.
    :return: loss: Loss function (defined below).
    """

    error_checking.assert_is_integer(first_up_flux_inc_index)
    error_checking.assert_is_geq(first_up_flux_inc_index, 0)
    error_checking.assert_is_integer(first_down_flux_inc_index)
    error_checking.assert_is_geq(first_down_flux_inc_index, 0)

    error_checking.assert_is_geq(net_flux_increment_weight, 0.)
    error_checking.assert_is_geq(total_net_flux_weight, 0.)
    error_checking.assert_is_greater(
        net_flux_increment_weight + total_net_flux_weight, 0.)

    error_checking.assert_is_boolean(use_magnitude_weight)

    edge_heights_m_agl = example_utils.get_grid_cell_edges(heights_m_agl)
    grid_cell_widths_metres = (
        example_utils.get_grid_cell_widths(edge_heights_m_agl))

    num_heights = len(heights_m_agl)
    grid_cell_width_matrix_metres = numpy.reshape(grid_cell_widths_metres,
                                                  (1, num_heights))

    def loss(target_tensor, prediction_tensor):
        """Computes loss.

        :param target_tensor: Tensor of target (actual) values.
        :param prediction_tensor: Tensor of predicted values.
        :return: loss: Scalar.
        """

        j = first_down_flux_inc_index
        k = first_up_flux_inc_index

        target_net_flux_inc_tensor_w_m03 = (
            target_tensor[..., j:(j + num_heights)] -
            target_tensor[..., k:(k + num_heights)])
        predicted_net_flux_inc_tensor_w_m03 = (
            prediction_tensor[..., j:(j + num_heights)] -
            prediction_tensor[..., k:(k + num_heights)])
        loss = net_flux_increment_weight * (
            predicted_net_flux_inc_tensor_w_m03 -
            target_net_flux_inc_tensor_w_m03)**2

        target_net_flux_tensor_w_m02 = K.cumsum(
            target_net_flux_inc_tensor_w_m03 * grid_cell_width_matrix_metres,
            axis=1)
        predicted_net_flux_tensor_w_m02 = K.cumsum(
            predicted_net_flux_inc_tensor_w_m03 *
            grid_cell_width_matrix_metres,
            axis=1)
        loss += total_net_flux_weight * (predicted_net_flux_tensor_w_m02 -
                                         target_net_flux_tensor_w_m02)**2

        if use_magnitude_weight:
            loss = loss * K.maximum(target_net_flux_inc_tensor_w_m03,
                                    predicted_net_flux_inc_tensor_w_m03)

        return K.mean(loss)

    return loss
コード例 #6
0
def _get_water_path_profiles(example_dict,
                             get_lwp=True,
                             get_iwp=True,
                             get_wvp=True,
                             integrate_upward=False):
    """Computes profiles of LWP, IWP, and/or WVP.

    LWP = liquid-water path
    IWP = ice-water path
    WVP = water-vapour path

    If `integrate_upward == False`, then at height z, the LWP/IWP/WVP is the
    integral of LWC/IWC/WVC (respectively) from the top of atmosphere to z.

    If `integrate_upward == True`, then at height z, the LWP/IWP/WVP is the
    integral of LWC/IWC/WVC (respectively) from the surface to z.

    :param example_dict: Dictionary of examples (in the format returned by
        `read_file`).
    :param get_lwp: Boolean flag.  If True, will compute LWP profile for each
        example.
    :param get_iwp: Boolean flag.  If True, will compute IWP profile for each
        example.
    :param get_wvp: Boolean flag.  If True, will compute WVP profile for each
        example.
    :param integrate_upward: Boolean flag.  If True, will integrate from the
        surface up.  If False, will integrate from the top of atmosphere down.
    :return: example_dict: Same as input but with extra predictor variables.
    """

    vector_predictor_names = (
        example_dict[example_utils.VECTOR_PREDICTOR_NAMES_KEY])

    if integrate_upward:
        this_liquid_path_name = example_utils.UPWARD_LIQUID_WATER_PATH_NAME
        this_ice_path_name = example_utils.UPWARD_ICE_WATER_PATH_NAME
        this_vapour_path_name = example_utils.UPWARD_WATER_VAPOUR_PATH_NAME
    else:
        this_liquid_path_name = example_utils.LIQUID_WATER_PATH_NAME
        this_ice_path_name = example_utils.ICE_WATER_PATH_NAME
        this_vapour_path_name = example_utils.WATER_VAPOUR_PATH_NAME

    get_lwp = get_lwp and this_liquid_path_name not in vector_predictor_names
    get_iwp = get_iwp and this_ice_path_name not in vector_predictor_names
    get_wvp = get_wvp and this_vapour_path_name not in vector_predictor_names

    if not (get_lwp or get_iwp or get_wvp):
        return example_dict

    edge_heights_m_agl = example_utils.get_grid_cell_edges(
        example_dict[example_utils.HEIGHTS_KEY])
    grid_cell_widths_metres = example_utils.get_grid_cell_widths(
        edge_heights_m_agl)

    num_examples = len(example_dict[example_utils.VALID_TIMES_KEY])
    num_heights = len(example_dict[example_utils.HEIGHTS_KEY])

    grid_cell_width_matrix_metres = numpy.reshape(grid_cell_widths_metres,
                                                  (1, num_heights))
    grid_cell_width_matrix_metres = numpy.repeat(grid_cell_width_matrix_metres,
                                                 repeats=num_examples,
                                                 axis=0)

    if get_lwp:
        lwc_matrix_kg_m03 = example_utils.get_field_from_dict(
            example_dict=example_dict,
            field_name=example_utils.LIQUID_WATER_CONTENT_NAME)

        if integrate_upward:
            lwp_matrix_kg_m02 = numpy.cumsum(lwc_matrix_kg_m03 *
                                             grid_cell_width_matrix_metres,
                                             axis=1)
        else:
            lwp_matrix_kg_m02 = numpy.fliplr(
                numpy.cumsum(numpy.fliplr(lwc_matrix_kg_m03 *
                                          grid_cell_width_matrix_metres),
                             axis=1))

        example_dict[example_utils.VECTOR_PREDICTOR_NAMES_KEY].append(
            this_liquid_path_name)

        example_dict[example_utils.VECTOR_PREDICTOR_VALS_KEY] = (
            numpy.concatenate(
                (example_dict[example_utils.VECTOR_PREDICTOR_VALS_KEY],
                 numpy.expand_dims(lwp_matrix_kg_m02, axis=-1)),
                axis=-1))

    if get_iwp:
        iwc_matrix_kg_m03 = example_utils.get_field_from_dict(
            example_dict=example_dict,
            field_name=example_utils.ICE_WATER_CONTENT_NAME)

        if integrate_upward:
            iwp_matrix_kg_m02 = numpy.cumsum(iwc_matrix_kg_m03 *
                                             grid_cell_width_matrix_metres,
                                             axis=1)
        else:
            iwp_matrix_kg_m02 = numpy.fliplr(
                numpy.cumsum(numpy.fliplr(iwc_matrix_kg_m03 *
                                          grid_cell_width_matrix_metres),
                             axis=1))

        example_dict[example_utils.VECTOR_PREDICTOR_NAMES_KEY].append(
            this_ice_path_name)

        example_dict[example_utils.VECTOR_PREDICTOR_VALS_KEY] = (
            numpy.concatenate(
                (example_dict[example_utils.VECTOR_PREDICTOR_VALS_KEY],
                 numpy.expand_dims(iwp_matrix_kg_m02, axis=-1)),
                axis=-1))

    if get_wvp:
        air_density_matrix_kg_m03 = _get_air_density(example_dict)
        specific_humidity_matrix_kg_kg01 = example_utils.get_field_from_dict(
            example_dict=example_dict,
            field_name=example_utils.SPECIFIC_HUMIDITY_NAME)
        vapour_content_matrix_kg_m03 = (specific_humidity_matrix_kg_kg01 *
                                        air_density_matrix_kg_m03)

        if integrate_upward:
            vapour_path_matrix_kg_m02 = numpy.cumsum(
                vapour_content_matrix_kg_m03 * grid_cell_width_matrix_metres,
                axis=1)
        else:
            vapour_path_matrix_kg_m02 = numpy.fliplr(
                numpy.cumsum(numpy.fliplr(vapour_content_matrix_kg_m03 *
                                          grid_cell_width_matrix_metres),
                             axis=1))

        example_dict[example_utils.VECTOR_PREDICTOR_NAMES_KEY].append(
            this_vapour_path_name)

        example_dict[example_utils.VECTOR_PREDICTOR_VALS_KEY] = (
            numpy.concatenate(
                (example_dict[example_utils.VECTOR_PREDICTOR_VALS_KEY],
                 numpy.expand_dims(vapour_path_matrix_kg_m02, axis=-1)),
                axis=-1))

    return example_dict