コード例 #1
0
ファイル: test_lgx_rg.py プロジェクト: victox5/ml_algorithms
    def test_grad_data3_3(self):
        y = self.data3[:, -1:]
        X = self.data3[:, :-1]
        m, n = X.shape
        intercept = ones((m, 1), dtype=float64)
        X = append(intercept, X, axis=1)
        theta = array([[-24], [0.2], [0.2]])

        assert_allclose([[0.043], [2.566], [2.647]],
                        grad(X, y, theta),
                        rtol=0,
                        atol=0.001,
                        equal_nan=False)
コード例 #2
0
ファイル: test_lgx_rg.py プロジェクト: victox5/ml_algorithms
    def test_grad_data3_2(self):
        y = self.data3[:, -1:]
        X = self.data3[:, :-1]
        m, _ = X.shape
        intercept = ones((m, 1), dtype=float64)
        X = append(intercept, X, axis=1)
        theta = array([[-0.1], [0.4], [-0.4]])

        assert_allclose([[-0.134], [-8.275], [-18.564]],
                        grad(X, y, theta),
                        rtol=0,
                        atol=0.001,
                        equal_nan=False)
コード例 #3
0
ファイル: test_lgx_rg.py プロジェクト: victox5/ml_algorithms
    def test_grad_data3_1(self):
        y = self.data3[:, -1:]
        X = self.data3[:, :-1]
        m, n = X.shape
        intercept = ones((m, 1), dtype=float64)
        X = append(intercept, X, axis=1)
        theta = zeros((n + 1, 1), dtype=float64)

        assert_allclose([[-0.1000], [-12.0092], [-11.2628]],
                        grad(X, y, theta),
                        rtol=0,
                        atol=5e-05,
                        equal_nan=False)
コード例 #4
0
ファイル: test_lgx_rg.py プロジェクト: victox5/ml_algorithms
    def test_grad_data4_1(self):
        y = self.data4[:, -1:]
        X = self.data4[:, :-1]
        m, n = X.shape
        intercept = ones((m, 1), dtype=float64)
        X = append(intercept, X, axis=1)
        theta = zeros((n + 1, 1), dtype=float64)

        assert_allclose(array([[0.151], [0.225], [11.154], [9.838], [2.534],
                               [4.887], [3.733], [0.044], [3.686]]),
                        grad(X, y, theta),
                        rtol=0,
                        atol=0.001,
                        equal_nan=False)
コード例 #5
0
ファイル: test_lgx_rg.py プロジェクト: victox5/ml_algorithms
    def test_grad_data4_3(self):
        y = self.data4[:, -1:]
        X = self.data4[:, :-1]
        m, n = X.shape
        intercept = ones((m, 1), dtype=float64)
        X = append(intercept, X, axis=1)
        theta = -0.1 * ones((n + 1, 1), dtype=float64)

        assert_allclose(array([[-0.349], [-1.698], [-49.293], [-24.715],
                               [-7.734], [-35.013], [-12.263], [-0.192],
                               [-12.935]]),
                        grad(X, y, theta),
                        rtol=0,
                        atol=0.001,
                        equal_nan=False)
コード例 #6
0
ファイル: test_lgx_rg.py プロジェクト: victox5/ml_algorithms
    def test_grad_data4_6(self):
        y = self.data4[:, -1:]
        X = self.data4[:, :-1]
        m, n = X.shape
        intercept = ones((m, 1), dtype=float64)
        X = append(intercept, X, axis=1)
        theta = -0.145 * ones((n + 1, 1), dtype=float64)

        def J(theta):
            return cost_func(X, y, theta)

        assert_allclose(grad(X, y, theta),
                        numerical_grad(J, theta, self.err),
                        rtol=0,
                        atol=0.001,
                        equal_nan=False)
コード例 #7
0
ファイル: test_lgx_rg.py プロジェクト: victox5/ml_algorithms
    def test_grad_data4_5(self):
        y = self.data4[:, -1:]
        X = self.data4[:, :-1]
        m, _ = X.shape
        intercept = ones((m, 1), dtype=float64)
        X = append(intercept, X, axis=1)
        theta = array([[-0.198], [0.25], [-0.234], [-0.793], [0.123], [-0.378],
                       [0.423], [-0.678], [-0.3]])

        def J(theta):
            return cost_func(X, y, theta)

        assert_allclose(grad(X, y, theta),
                        numerical_grad(J, theta, self.err),
                        rtol=0,
                        atol=0.001,
                        equal_nan=False)