コード例 #1
0
def LL_sor_loss(x_opt, X, y, cv, jitter, disable_pbar=True, leave=False):
    Lambda = x_opt[0]

    kMM = X[0]
    kMN = X[1]
    Mactive, Nsample = kMN.shape

    kernel_ = kMM + np.dot(kMN, kMN.T) / Lambda**2 + np.diag(
        np.ones(Mactive)) * jitter
    y_ = np.dot(kMN, y) / Lambda**2

    # Get log likelihood score
    L = np.linalg.cholesky(kernel_)
    z = sp.linalg.solve_triangular(L, y_, lower=True)
    alpha = sp.linalg.solve_triangular(L.T, z, lower=False,
                                       overwrite_b=True).flatten()
    #alpha = np.linalg.solve(kernel_train, y_train).flatten()
    #diag = np.zeros((Mactive))
    #for ii in range(Mactive): diag[ii] = L[ii,ii]
    logDet = 0
    for ii in range(Mactive):
        logDet += np.log(L[ii, ii])
    logL = -0.5 * Mactive * np.log(2 * np.pi) - 0.5 * np.dot(
        y_.flatten(), alpha) - logDet
    return logL
コード例 #2
0
def sor_loss(x_opt,
             X,
             y,
             cv,
             jitter,
             disable_pbar=True,
             leave=False,
             return_score=False):

    Lambda = x_opt[0]
    kMM = X[0]
    kMN = X[1]

    Mactive, Nsample = kMN.shape

    mse = 0
    y_p = np.zeros((Nsample, ))
    scores = []
    for train, test in tqdm_cs(cv.split(kMN.T),
                               total=cv.n_splits,
                               disable=disable_pbar,
                               leave=False):
        # prepare SoR kernel
        kMN_train = kMN[:, train]
        kernel_train = kMM + np.dot(kMN_train,
                                    kMN_train.T) / Lambda**2 + np.diag(
                                        np.ones(Mactive)) * jitter
        y_train = np.dot(kMN_train, y[train]) / Lambda**2

        # train the KRR model
        alpha = np.linalg.solve(kernel_train, y_train).flatten()

        # make predictions
        kernel_test = kMN[:, test]
        y_pred = np.dot(alpha, kernel_test).flatten()
        if return_score is True:
            scores.append(get_score(y_pred, y[test]))
            #y_p[test] = y_pred

        mse += np.sum((y_pred - y[test])**2)
    mse /= len(y)

    if return_score is True:
        #score = get_score(y_p,y)
        score = {}
        for k in scores[0]:
            aa = []
            for sc in scores:
                aa.append(sc[k])
            score[k] = np.mean(aa)
        return score
    return mse
コード例 #3
0
def soap_cov_loss(x_opt,
                  rawsoaps,
                  y,
                  cv,
                  jitter,
                  disable_pbar=True,
                  leave=False,
                  compressor=None,
                  active_ids=None,
                  return_score=False):
    Lambda = x_opt[0]
    fj = x_opt[1:]

    compressor.set_scaling_weights(fj)

    X = compressor.transform(rawsoaps)
    X_pseudo = X[active_ids]

    kMM = np.dot(X_pseudo, X_pseudo.T)
    kMN = np.dot(X_pseudo, X.T)
    Mactive, Nsample = kMN.shape

    mse = 0
    y_p = np.zeros((Nsample, ))
    for train, test in tqdm_cs(cv.split(rawsoaps),
                               total=cv.n_splits,
                               disable=disable_pbar,
                               leave=False):
        # prepare SoR kernel
        kMN_train = kMN[:, train]
        kernel_train = (kMM + np.dot(kMN_train, kMN_train.T) /
                        Lambda**2) + np.diag(np.ones(Mactive)) * jitter
        y_train = np.dot(kMN_train, y[train]) / Lambda**2

        # train the KRR model
        alpha = np.linalg.solve(kernel_train, y_train).flatten()

        # make predictions
        kernel_test = kMN[:, test]
        y_pred = np.dot(alpha, kernel_test).flatten()
        if return_score is True:
            y_p[test] = y_pred

        mse += np.sum((y_pred - y[test])**2)
    mse /= len(y)

    if return_score is True:
        score = get_score(y_p, y)
        return score

    return mse
コード例 #4
0
def sor_fj_loss(x_opt,
                data,
                y,
                cv,
                jitter,
                disable_pbar=True,
                leave=False,
                kernel=None,
                compressor=None,
                strides=None,
                active_strides=None,
                stride_size=None,
                return_score=False):

    Lambda = x_opt[0]
    scaling_factors = x_opt[1:]

    compressor.to_reshape = False
    compressor.set_scaling_weights(scaling_factors)

    unlinsoaps = data[0]
    unlinsoaps_active = data[1]

    X = compressor.scale_features(unlinsoaps, stride_size)
    X_active = compressor.scale_features(unlinsoaps_active, stride_size)
    # X = compressor.transform(unlinsoaps)
    # X_active = compressor.transform(unlinsoaps_active)
    if strides is not None and active_strides is not None:
        X_active = dict(strides=active_strides, feature_matrix=X_active)
        X = dict(strides=strides, feature_matrix=X)

    kMM = kernel.transform(X_active, X_train=X_active)
    kMN = kernel.transform(X_active, X_train=X)

    Mactive, Nsample = kMN.shape

    mse = 0
    y_p = np.zeros((Nsample, ))
    scores = []
    for train, test in tqdm_cs(cv.split(y.reshape((-1, 1))),
                               total=cv.n_splits,
                               disable=disable_pbar,
                               leave=False):
        # prepare SoR kernel
        kMN_train = kMN[:, train]
        kernel_train = (kMM + np.dot(kMN_train, kMN_train.T) /
                        Lambda**2) + np.diag(np.ones(Mactive)) * jitter
        y_train = np.dot(kMN_train, y[train]) / Lambda**2

        # train the KRR model
        alpha = np.linalg.solve(kernel_train, y_train).flatten()

        # make predictions
        kernel_test = kMN[:, test]
        y_pred = np.dot(alpha, kernel_test).flatten()
        if return_score is True:
            scores.append(get_score(y_pred, y[test]))
            #y_p[test] = y_pred

        mse += np.sum((y_pred - y[test])**2)
    mse /= len(y)

    if return_score is True:
        #score = get_score(y_p,y)
        score = {}
        for k in scores[0]:
            aa = []
            for sc in scores:
                aa.append(sc[k])
            score[k] = np.mean(aa)
        return score

    return mse
コード例 #5
0
        Nsample = Kmat.shape[0]


    # trainer = TrainerCholesky(memory_efficient=True)
    # model = KRR(jitter,delta,trainer)
    lc = LCSplit(shuffler, **lc_params)

    scores = []
    results = dict(input_params=inp,results=[])
    ii = 0
    for train,test in tqdm_cs(lc.split(y.reshape((-1,1))),total=lc.n_splits,desc='LC'):
        if ii >= start_from_iter:
            if is_SoR is True:
                Mactive = kMN.shape[0]
                kMN_train =  kMN[:,train]
                k_train = kMM + np.dot(kMN_train,kMN_train.T)/Lambda**2 + np.diag(np.ones(Mactive))*jitter
                y_train = np.dot(kMN_train,y[train])/Lambda**2
                k_test = kMN[:,test]
            else:
                Ntrain = len(train)
                k_train = Kmat[np.ix_(train,train)] + np.diag(np.ones(Ntrain))*jitter
                y_train = y[train]
                k_test = Kmat[np.ix_(train,test)]

            alpha = np.linalg.solve(k_train, y_train).flatten()
            y_pred = np.dot(alpha,k_test).flatten()
            #model.fit(k_train,y_train)
            #y_pred = model.predict(k_test)

            sc = get_score(y_pred,y[test])
            dd = dict(Ntrain = len(train), Ntest = len(test),iter=ii)