def __init__(self, hidden_dim, activation='tanh', inner_init='orthogonal', parameters=None, return_sequences=True): self.return_sequences = return_sequences self.hidden_dim = hidden_dim self.inner_init = get_initializer(inner_init) self.activation = get_activation(activation) self.activation_d = elementwise_grad(self.activation) self.sigmoid_d = elementwise_grad(sigmoid) if parameters is None: self._params = Parameters() else: self._params = parameters self.last_input = None self.states = None self.outputs = None self.gates = None self.hprev = None self.input_dim = None self.W = None self.U = None
def __init__(self, init='glorot_uniform', scale=0.5, bias=1.0, regularizers=None, constraints=None): """A container for layer's parameters. Parameters ---------- init : str, default 'glorot_uniform'. The name of the weight initialization function. scale : float, default 0.5 bias : float, default 1.0 Initial values for bias. regularizers : dict Weight regularizers. {'W' : L2()} constraints : dict Weight constraints. {'b' : MaxNorm()} """ if constraints is None: self.constraints = {} else: self.constraints = constraints if regularizers is None: self.regularizers = {} else: self.regularizers = regularizers self.initial_bias = bias self.scale = scale self.init = get_initializer(init) self._params = {} self._grads = {}
def __init__(self, init='glorot_uniform', scale=0.5, bias=1.0, regularizers=None, constraints=None): """A container for layer's parameters. Parameters ---------- init : str, default 'glorot_uniform'. The name of the weight initialization function. scale : float, default 0.5 bias : float, default 1.0 Initial values for bias. regularizers : dict Weight regularizers. >>> {'W' : L2()} constraints : dict Weight constraints. >>> {'b' : MaxNorm()} """ if constraints is None: self.constraints = {} else: self.constraints = constraints if regularizers is None: self.regularizers = {} else: self.regularizers = regularizers self.initial_bias = bias self.scale = scale self.init = get_initializer(init) self._params = {} self._grads = {}
def __init__(self, hidden_dim, activation='tanh', inner_init='orthogonal', parameters=None, return_sequences=True): self.return_sequences = return_sequences self.hidden_dim = hidden_dim self.inner_init = get_initializer(inner_init) self.activation = get_activation(activation) self.activation_d = elementwise_grad(self.activation) if parameters is None: self._params = Parameters() else: self._params = parameters self.last_input = None self.states = None self.hprev = None self.input_dim = None