コード例 #1
0
class PPOPolicy(TFPolicy):
    def __init__(self, seed, brain, trainer_params, is_training, load):
        """
        Policy for Proximal Policy Optimization Networks.
        :param seed: Random seed.
        :param brain: Assigned Brain object.
        :param trainer_params: Defined training parameters.
        :param is_training: Whether the model should be trained.
        :param load: Whether a pre-trained model will be loaded or a new one created.
        """
        super().__init__(seed, brain, trainer_params)

        reward_signal_configs = trainer_params["reward_signals"]

        self.reward_signals = {}
        with self.graph.as_default():
            self.model = PPOModel(
                brain,
                lr=float(trainer_params["learning_rate"]),
                h_size=int(trainer_params["hidden_units"]),
                epsilon=float(trainer_params["epsilon"]),
                beta=float(trainer_params["beta"]),
                max_step=float(trainer_params["max_steps"]),
                normalize=trainer_params["normalize"],
                use_recurrent=trainer_params["use_recurrent"],
                num_layers=int(trainer_params["num_layers"]),
                m_size=self.m_size,
                seed=seed,
                stream_names=list(reward_signal_configs.keys()),
                vis_encode_type=EncoderType(
                    trainer_params.get("vis_encode_type", "simple")),
            )
            self.model.create_ppo_optimizer()

            # Create reward signals
            for reward_signal, config in reward_signal_configs.items():
                self.reward_signals[reward_signal] = create_reward_signal(
                    self, reward_signal, config)

            # Create pretrainer if needed
            if "pretraining" in trainer_params:
                BCModule.check_config(trainer_params["pretraining"])
                self.bc_module = BCModule(
                    self,
                    policy_learning_rate=trainer_params["learning_rate"],
                    default_batch_size=trainer_params["batch_size"],
                    default_num_epoch=trainer_params["num_epoch"],
                    **trainer_params["pretraining"],
                )
            else:
                self.bc_module = None

        if load:
            self._load_graph()
        else:
            self._initialize_graph()

        self.inference_dict = {
            "action": self.model.output,
            "log_probs": self.model.all_log_probs,
            "value": self.model.value_heads,
            "entropy": self.model.entropy,
            "learning_rate": self.model.learning_rate,
        }
        if self.use_continuous_act:
            self.inference_dict["pre_action"] = self.model.output_pre
        if self.use_recurrent:
            self.inference_dict["memory_out"] = self.model.memory_out
        if (is_training and self.use_vec_obs and trainer_params["normalize"]
                and not load):
            self.inference_dict[
                "update_mean"] = self.model.update_normalization

        self.total_policy_loss = self.model.policy_loss

        self.update_dict = {
            "value_loss": self.model.value_loss,
            "policy_loss": self.total_policy_loss,
            "update_batch": self.model.update_batch,
        }

    @timed
    def evaluate(self, brain_info):
        """
        Evaluates policy for the agent experiences provided.
        :param brain_info: BrainInfo object containing inputs.
        :return: Outputs from network as defined by self.inference_dict.
        """
        feed_dict = {
            self.model.batch_size: len(brain_info.vector_observations),
            self.model.sequence_length: 1,
        }
        epsilon = None
        if self.use_recurrent:
            if not self.use_continuous_act:
                feed_dict[
                    self.model.
                    prev_action] = brain_info.previous_vector_actions.reshape(
                        [-1, len(self.model.act_size)])
            if brain_info.memories.shape[1] == 0:
                brain_info.memories = self.make_empty_memory(
                    len(brain_info.agents))
            feed_dict[self.model.memory_in] = brain_info.memories
        if self.use_continuous_act:
            epsilon = np.random.normal(
                size=(len(brain_info.vector_observations),
                      self.model.act_size[0]))
            feed_dict[self.model.epsilon] = epsilon
        feed_dict = self.fill_eval_dict(feed_dict, brain_info)
        run_out = self._execute_model(feed_dict, self.inference_dict)
        if self.use_continuous_act:
            run_out["random_normal_epsilon"] = epsilon
        return run_out

    @timed
    def update(self, mini_batch, num_sequences):
        """
        Updates model using buffer.
        :param num_sequences: Number of trajectories in batch.
        :param mini_batch: Experience batch.
        :return: Output from update process.
        """
        feed_dict = {
            self.model.batch_size:
            num_sequences,
            self.model.sequence_length:
            self.sequence_length,
            self.model.mask_input:
            mini_batch["masks"].flatten(),
            self.model.advantage:
            mini_batch["advantages"].reshape([-1, 1]),
            self.model.all_old_log_probs:
            mini_batch["action_probs"].reshape([-1,
                                                sum(self.model.act_size)]),
        }
        for name in self.reward_signals:
            feed_dict[self.model.returns_holders[name]] = mini_batch[
                "{}_returns".format(name)].flatten()
            feed_dict[self.model.old_values[name]] = mini_batch[
                "{}_value_estimates".format(name)].flatten()

        if self.use_continuous_act:
            feed_dict[
                self.model.output_pre] = mini_batch["actions_pre"].reshape(
                    [-1, self.model.act_size[0]])
            feed_dict[self.model.
                      epsilon] = mini_batch["random_normal_epsilon"].reshape(
                          [-1, self.model.act_size[0]])
        else:
            feed_dict[
                self.model.action_holder] = mini_batch["actions"].reshape(
                    [-1, len(self.model.act_size)])
            if self.use_recurrent:
                feed_dict[self.model.
                          prev_action] = mini_batch["prev_action"].reshape(
                              [-1, len(self.model.act_size)])
            feed_dict[
                self.model.action_masks] = mini_batch["action_mask"].reshape(
                    [-1, sum(self.brain.vector_action_space_size)])
        if self.use_vec_obs:
            feed_dict[self.model.vector_in] = mini_batch["vector_obs"].reshape(
                [-1, self.vec_obs_size])
        if self.model.vis_obs_size > 0:
            for i, _ in enumerate(self.model.visual_in):
                _obs = mini_batch["visual_obs%d" % i]
                if self.sequence_length > 1 and self.use_recurrent:
                    (_batch, _seq, _w, _h, _c) = _obs.shape
                    feed_dict[self.model.visual_in[i]] = _obs.reshape(
                        [-1, _w, _h, _c])
                else:
                    feed_dict[self.model.visual_in[i]] = _obs
        if self.use_recurrent:
            mem_in = mini_batch["memory"][:, 0, :]
            feed_dict[self.model.memory_in] = mem_in
        run_out = self._execute_model(feed_dict, self.update_dict)
        return run_out

    def get_value_estimates(self, brain_info: BrainInfo, idx: int,
                            done: bool) -> Dict[str, float]:
        """
        Generates value estimates for bootstrapping.
        :param brain_info: BrainInfo to be used for bootstrapping.
        :param idx: Index in BrainInfo of agent.
        :param done: Whether or not this is the last element of the episode, in which case the value estimate will be 0.
        :return: The value estimate dictionary with key being the name of the reward signal and the value the
        corresponding value estimate.
        """

        feed_dict: Dict[tf.Tensor, Any] = {
            self.model.batch_size: 1,
            self.model.sequence_length: 1,
        }
        for i in range(len(brain_info.visual_observations)):
            feed_dict[self.model.visual_in[i]] = [
                brain_info.visual_observations[i][idx]
            ]
        if self.use_vec_obs:
            feed_dict[self.model.vector_in] = [
                brain_info.vector_observations[idx]
            ]
        if self.use_recurrent:
            if brain_info.memories.shape[1] == 0:
                brain_info.memories = self.make_empty_memory(
                    len(brain_info.agents))
            feed_dict[self.model.memory_in] = [brain_info.memories[idx]]
        if not self.use_continuous_act and self.use_recurrent:
            feed_dict[
                self.model.
                prev_action] = brain_info.previous_vector_actions[idx].reshape(
                    [-1, len(self.model.act_size)])
        value_estimates = self.sess.run(self.model.value_heads, feed_dict)

        value_estimates = {k: float(v) for k, v in value_estimates.items()}

        # If we're done, reassign all of the value estimates that need terminal states.
        if done:
            for k in value_estimates:
                if self.reward_signals[k].use_terminal_states:
                    value_estimates[k] = 0.0

        return value_estimates

    def get_action(self, brain_info: BrainInfo) -> ActionInfo:
        """
        Decides actions given observations information, and takes them in environment.
        :param brain_info: A dictionary of brain names and BrainInfo from environment.
        :return: an ActionInfo containing action, memories, values and an object
        to be passed to add experiences
        """
        if len(brain_info.agents) == 0:
            return ActionInfo([], [], [], None, None)

        run_out = self.evaluate(brain_info)
        mean_values = np.mean(np.array(list(run_out.get("value").values())),
                              axis=0).flatten()

        return ActionInfo(
            action=run_out.get("action"),
            memory=run_out.get("memory_out"),
            text=None,
            value=mean_values,
            outputs=run_out,
        )
コード例 #2
0
class PPOPolicy(TFPolicy):
    def __init__(
        self,
        seed: int,
        brain: BrainParameters,
        trainer_params: Dict[str, Any],
        is_training: bool,
        load: bool,
    ):
        """
        Policy for Proximal Policy Optimization Networks.
        :param seed: Random seed.
        :param brain: Assigned Brain object.
        :param trainer_params: Defined training parameters.
        :param is_training: Whether the model should be trained.
        :param load: Whether a pre-trained model will be loaded or a new one created.
        """
        super().__init__(seed, brain, trainer_params)

        reward_signal_configs = trainer_params["reward_signals"]
        self.inference_dict: Dict[str, tf.Tensor] = {}
        self.update_dict: Dict[str, tf.Tensor] = {}
        self.stats_name_to_update_name = {
            "Losses/Value Loss": "value_loss",
            "Losses/Policy Loss": "policy_loss",
        }

        self.create_model(brain, trainer_params, reward_signal_configs,
                          is_training, load, seed)
        self.create_reward_signals(reward_signal_configs)

        with self.graph.as_default():
            self.bc_module: Optional[BCModule] = None
            # Create pretrainer if needed
            if "pretraining" in trainer_params:
                BCModule.check_config(trainer_params["pretraining"])
                self.bc_module = BCModule(
                    self,
                    policy_learning_rate=trainer_params["learning_rate"],
                    default_batch_size=trainer_params["batch_size"],
                    default_num_epoch=trainer_params["num_epoch"],
                    **trainer_params["pretraining"],
                )

        if load:
            self._load_graph()
        else:
            self._initialize_graph()

    def create_model(self, brain, trainer_params, reward_signal_configs,
                     is_training, load, seed):
        """
        Create PPO model
        :param brain: Assigned Brain object.
        :param trainer_params: Defined training parameters.
        :param reward_signal_configs: Reward signal config
        :param seed: Random seed.
        """
        with self.graph.as_default():
            self.model = PPOModel(
                brain=brain,
                lr=float(trainer_params["learning_rate"]),
                lr_schedule=LearningRateSchedule(
                    trainer_params.get("learning_rate_schedule", "linear")),
                h_size=int(trainer_params["hidden_units"]),
                epsilon=float(trainer_params["epsilon"]),
                beta=float(trainer_params["beta"]),
                max_step=float(trainer_params["max_steps"]),
                normalize=trainer_params["normalize"],
                use_recurrent=trainer_params["use_recurrent"],
                num_layers=int(trainer_params["num_layers"]),
                m_size=self.m_size,
                seed=seed,
                stream_names=list(reward_signal_configs.keys()),
                vis_encode_type=EncoderType(
                    trainer_params.get("vis_encode_type", "simple")),
            )
            self.model.create_ppo_optimizer()

        self.inference_dict.update({
            "action": self.model.output,
            "log_probs": self.model.all_log_probs,
            "value_heads": self.model.value_heads,
            "value": self.model.value,
            "entropy": self.model.entropy,
            "learning_rate": self.model.learning_rate,
        })
        if self.use_continuous_act:
            self.inference_dict["pre_action"] = self.model.output_pre
        if self.use_recurrent:
            self.inference_dict["memory_out"] = self.model.memory_out

        self.total_policy_loss = self.model.abs_policy_loss
        self.update_dict.update({
            "value_loss": self.model.value_loss,
            "policy_loss": self.total_policy_loss,
            "update_batch": self.model.update_batch,
        })

    def create_reward_signals(self, reward_signal_configs):
        """
        Create reward signals
        :param reward_signal_configs: Reward signal config.
        """
        self.reward_signals = {}
        with self.graph.as_default():
            # Create reward signals
            for reward_signal, config in reward_signal_configs.items():
                self.reward_signals[reward_signal] = create_reward_signal(
                    self, self.model, reward_signal, config)
                self.update_dict.update(
                    self.reward_signals[reward_signal].update_dict)

    @timed
    def evaluate(self, brain_info):
        """
        Evaluates policy for the agent experiences provided.
        :param brain_info: BrainInfo object containing inputs.
        :return: Outputs from network as defined by self.inference_dict.
        """
        feed_dict = {
            self.model.batch_size: len(brain_info.vector_observations),
            self.model.sequence_length: 1,
        }
        epsilon = None
        if self.use_recurrent:
            if not self.use_continuous_act:
                feed_dict[
                    self.model.
                    prev_action] = brain_info.previous_vector_actions.reshape(
                        [-1, len(self.model.act_size)])
            if brain_info.memories.shape[1] == 0:
                brain_info.memories = self.make_empty_memory(
                    len(brain_info.agents))
            feed_dict[self.model.memory_in] = brain_info.memories
        if self.use_continuous_act:
            epsilon = np.random.normal(
                size=(len(brain_info.vector_observations),
                      self.model.act_size[0]))
            feed_dict[self.model.epsilon] = epsilon
        feed_dict = self.fill_eval_dict(feed_dict, brain_info)
        run_out = self._execute_model(feed_dict, self.inference_dict)
        if self.use_continuous_act:
            run_out["random_normal_epsilon"] = epsilon
        return run_out

    @timed
    def update(self, mini_batch, num_sequences):
        """
        Performs update on model.
        :param mini_batch: Batch of experiences.
        :param num_sequences: Number of sequences to process.
        :return: Results of update.
        """
        feed_dict = self.construct_feed_dict(self.model, mini_batch,
                                             num_sequences)
        stats_needed = self.stats_name_to_update_name
        update_stats = {}
        # Collect feed dicts for all reward signals.
        for _, reward_signal in self.reward_signals.items():
            feed_dict.update(
                reward_signal.prepare_update(self.model, mini_batch,
                                             num_sequences))
            stats_needed.update(reward_signal.stats_name_to_update_name)

        update_vals = self._execute_model(feed_dict, self.update_dict)
        for stat_name, update_name in stats_needed.items():
            update_stats[stat_name] = update_vals[update_name]
        return update_stats

    def construct_feed_dict(self, model, mini_batch, num_sequences):
        feed_dict = {
            model.batch_size: num_sequences,
            model.sequence_length: self.sequence_length,
            model.mask_input: mini_batch["masks"],
            model.advantage: mini_batch["advantages"],
            model.all_old_log_probs: mini_batch["action_probs"],
        }
        for name in self.reward_signals:
            feed_dict[model.returns_holders[name]] = mini_batch[
                "{}_returns".format(name)]
            feed_dict[model.old_values[name]] = mini_batch[
                "{}_value_estimates".format(name)]

        if self.use_continuous_act:
            feed_dict[model.output_pre] = mini_batch["actions_pre"]
            feed_dict[model.epsilon] = mini_batch["random_normal_epsilon"]
        else:
            feed_dict[model.action_holder] = mini_batch["actions"]
            if self.use_recurrent:
                feed_dict[model.prev_action] = mini_batch["prev_action"]
            feed_dict[model.action_masks] = mini_batch["action_mask"]
        if self.use_vec_obs:
            feed_dict[model.vector_in] = mini_batch["vector_obs"]
        if self.model.vis_obs_size > 0:
            for i, _ in enumerate(self.model.visual_in):
                feed_dict[model.visual_in[i]] = mini_batch["visual_obs%d" % i]
        if self.use_recurrent:
            mem_in = [
                mini_batch["memory"][i] for i in range(
                    0, len(mini_batch["memory"]), self.sequence_length)
            ]
            feed_dict[model.memory_in] = mem_in
        return feed_dict

    def get_value_estimates(self, brain_info: BrainInfo, idx: int,
                            done: bool) -> Dict[str, float]:
        """
        Generates value estimates for bootstrapping.
        :param brain_info: BrainInfo to be used for bootstrapping.
        :param idx: Index in BrainInfo of agent.
        :param done: Whether or not this is the last element of the episode, in which case the value estimate will be 0.
        :return: The value estimate dictionary with key being the name of the reward signal and the value the
        corresponding value estimate.
        """

        feed_dict: Dict[tf.Tensor, Any] = {
            self.model.batch_size: 1,
            self.model.sequence_length: 1,
        }
        for i in range(len(brain_info.visual_observations)):
            feed_dict[self.model.visual_in[i]] = [
                brain_info.visual_observations[i][idx]
            ]
        if self.use_vec_obs:
            feed_dict[self.model.vector_in] = [
                brain_info.vector_observations[idx]
            ]
        if self.use_recurrent:
            if brain_info.memories.shape[1] == 0:
                brain_info.memories = self.make_empty_memory(
                    len(brain_info.agents))
            feed_dict[self.model.memory_in] = [brain_info.memories[idx]]
        if not self.use_continuous_act and self.use_recurrent:
            feed_dict[self.model.prev_action] = [
                brain_info.previous_vector_actions[idx]
            ]
        value_estimates = self.sess.run(self.model.value_heads, feed_dict)

        value_estimates = {k: float(v) for k, v in value_estimates.items()}

        # If we're done, reassign all of the value estimates that need terminal states.
        if done:
            for k in value_estimates:
                if self.reward_signals[k].use_terminal_states:
                    value_estimates[k] = 0.0

        return value_estimates
コード例 #3
0
class PPOPolicy(TFPolicy):
    def __init__(
        self,
        seed: int,
        brain: BrainParameters,
        trainer_params: Dict[str, Any],
        is_training: bool,
        load: bool,
    ):
        """
        Policy for Proximal Policy Optimization Networks.
        :param seed: Random seed.
        :param brain: Assigned Brain object.
        :param trainer_params: Defined training parameters.
        :param is_training: Whether the model should be trained.
        :param load: Whether a pre-trained model will be loaded or a new one created.
        """
        super().__init__(seed, brain, trainer_params)

        reward_signal_configs = trainer_params["reward_signals"]
        self.inference_dict: Dict[str, tf.Tensor] = {}
        self.update_dict: Dict[str, tf.Tensor] = {}
        self.stats_name_to_update_name = {
            "Losses/Value Loss": "value_loss",
            "Losses/Policy Loss": "policy_loss",
        }

        self.create_model(
            brain, trainer_params, reward_signal_configs, is_training, load, seed
        )
        self.create_reward_signals(reward_signal_configs)

        with self.graph.as_default():
            self.bc_module: Optional[BCModule] = None
            # Create pretrainer if needed
            if "behavioral_cloning" in trainer_params:
                BCModule.check_config(trainer_params["behavioral_cloning"])
                self.bc_module = BCModule(
                    self,
                    policy_learning_rate=trainer_params["learning_rate"],
                    default_batch_size=trainer_params["batch_size"],
                    default_num_epoch=3,
                    **trainer_params["behavioral_cloning"],
                )

        if load:
            self._load_graph()
        else:
            self._initialize_graph()

    def create_model(
        self, brain, trainer_params, reward_signal_configs, is_training, load, seed
    ):
        """
        Create PPO model
        :param brain: Assigned Brain object.
        :param trainer_params: Defined training parameters.
        :param reward_signal_configs: Reward signal config
        :param seed: Random seed.
        """
        with self.graph.as_default():
            self.model = PPOModel(
                brain=brain,
                lr=float(trainer_params["learning_rate"]),
                lr_schedule=LearningRateSchedule(
                    trainer_params.get("learning_rate_schedule", "linear")
                ),
                h_size=int(trainer_params["hidden_units"]),
                epsilon=float(trainer_params["epsilon"]),
                beta=float(trainer_params["beta"]),
                max_step=float(trainer_params["max_steps"]),
                normalize=trainer_params["normalize"],
                use_recurrent=trainer_params["use_recurrent"],
                num_layers=int(trainer_params["num_layers"]),
                m_size=self.m_size,
                seed=seed,
                stream_names=list(reward_signal_configs.keys()),
                vis_encode_type=EncoderType(
                    trainer_params.get("vis_encode_type", "simple")
                ),
            )
            self.model.create_ppo_optimizer()

        self.inference_dict.update(
            {
                "action": self.model.output,
                "log_probs": self.model.all_log_probs,
                "entropy": self.model.entropy,
                "learning_rate": self.model.learning_rate,
            }
        )
        if self.use_continuous_act:
            self.inference_dict["pre_action"] = self.model.output_pre
        if self.use_recurrent:
            self.inference_dict["memory_out"] = self.model.memory_out

        self.total_policy_loss = self.model.abs_policy_loss
        self.update_dict.update(
            {
                "value_loss": self.model.value_loss,
                "policy_loss": self.total_policy_loss,
                "update_batch": self.model.update_batch,
            }
        )

    def create_reward_signals(self, reward_signal_configs):
        """
        Create reward signals
        :param reward_signal_configs: Reward signal config.
        """
        self.reward_signals = {}
        with self.graph.as_default():
            # Create reward signals
            for reward_signal, config in reward_signal_configs.items():
                self.reward_signals[reward_signal] = create_reward_signal(
                    self, self.model, reward_signal, config
                )
                self.update_dict.update(self.reward_signals[reward_signal].update_dict)

    @timed
    def evaluate(
        self, batched_step_result: BatchedStepResult, global_agent_ids: List[str]
    ) -> Dict[str, Any]:
        """
        Evaluates policy for the agent experiences provided.
        :param batched_step_result: BatchedStepResult object containing inputs.
        :param global_agent_ids: The global (with worker ID) agent ids of the data in the batched_step_result.
        :return: Outputs from network as defined by self.inference_dict.
        """
        feed_dict = {
            self.model.batch_size: batched_step_result.n_agents(),
            self.model.sequence_length: 1,
        }
        epsilon = None
        if self.use_recurrent:
            if not self.use_continuous_act:
                feed_dict[self.model.prev_action] = self.retrieve_previous_action(
                    global_agent_ids
                )
            feed_dict[self.model.memory_in] = self.retrieve_memories(global_agent_ids)
        if self.use_continuous_act:
            epsilon = np.random.normal(
                size=(batched_step_result.n_agents(), self.model.act_size[0])
            )
            feed_dict[self.model.epsilon] = epsilon
        feed_dict = self.fill_eval_dict(feed_dict, batched_step_result)
        run_out = self._execute_model(feed_dict, self.inference_dict)
        return run_out

    @timed
    def update(self, mini_batch, num_sequences):
        """
        Performs update on model.
        :param mini_batch: Batch of experiences.
        :param num_sequences: Number of sequences to process.
        :return: Results of update.
        """
        feed_dict = self.construct_feed_dict(self.model, mini_batch, num_sequences)
        stats_needed = self.stats_name_to_update_name
        update_stats = {}
        # Collect feed dicts for all reward signals.
        for _, reward_signal in self.reward_signals.items():
            feed_dict.update(
                reward_signal.prepare_update(self.model, mini_batch, num_sequences)
            )
            stats_needed.update(reward_signal.stats_name_to_update_name)

        update_vals = self._execute_model(feed_dict, self.update_dict)
        for stat_name, update_name in stats_needed.items():
            update_stats[stat_name] = update_vals[update_name]
        return update_stats

    def construct_feed_dict(self, model, mini_batch, num_sequences):
        feed_dict = {
            model.batch_size: num_sequences,
            model.sequence_length: self.sequence_length,
            model.mask_input: mini_batch["masks"],
            model.advantage: mini_batch["advantages"],
            model.all_old_log_probs: mini_batch["action_probs"],
        }
        for name in self.reward_signals:
            feed_dict[model.returns_holders[name]] = mini_batch[
                "{}_returns".format(name)
            ]
            feed_dict[model.old_values[name]] = mini_batch[
                "{}_value_estimates".format(name)
            ]

        if self.use_continuous_act:
            feed_dict[model.output_pre] = mini_batch["actions_pre"]
        else:
            feed_dict[model.action_holder] = mini_batch["actions"]
            if self.use_recurrent:
                feed_dict[model.prev_action] = mini_batch["prev_action"]
            feed_dict[model.action_masks] = mini_batch["action_mask"]
        if self.use_vec_obs:
            feed_dict[model.vector_in] = mini_batch["vector_obs"]
        if self.model.vis_obs_size > 0:
            for i, _ in enumerate(self.model.visual_in):
                feed_dict[model.visual_in[i]] = mini_batch["visual_obs%d" % i]
        if self.use_recurrent:
            mem_in = [
                mini_batch["memory"][i]
                for i in range(0, len(mini_batch["memory"]), self.sequence_length)
            ]
            feed_dict[model.memory_in] = mem_in
        return feed_dict