コード例 #1
0
def test_batched_step_result_from_proto():
    n_agents = 10
    shapes = [(3, ), (4, )]
    spec = BehaviorSpec(create_observation_specs_with_shapes(shapes),
                        ActionSpec.create_continuous(3))
    ap_list = generate_list_agent_proto(n_agents, shapes)
    decision_steps, terminal_steps = steps_from_proto(ap_list, spec)
    for agent_id in range(n_agents):
        if agent_id in decision_steps:
            # we set the reward equal to the agent id in generate_list_agent_proto
            assert decision_steps[agent_id].reward == agent_id
        elif agent_id in terminal_steps:
            assert terminal_steps[agent_id].reward == agent_id
        else:
            raise Exception("Missing agent from the steps")
    # We sort the AgentId since they are split between DecisionSteps and TerminalSteps
    combined_agent_id = list(decision_steps.agent_id) + list(
        terminal_steps.agent_id)
    combined_agent_id.sort()
    assert combined_agent_id == list(range(n_agents))
    for agent_id in range(n_agents):
        assert (agent_id in terminal_steps) == (agent_id % 2 == 0)
        if agent_id in terminal_steps:
            assert terminal_steps[agent_id].interrupted == (agent_id % 4 == 0)
    assert decision_steps.obs[0].shape[1] == shapes[0][0]
    assert decision_steps.obs[1].shape[1] == shapes[1][0]
    assert terminal_steps.obs[0].shape[1] == shapes[0][0]
    assert terminal_steps.obs[1].shape[1] == shapes[1][0]
コード例 #2
0
def test_action_masking_continuous():
    n_agents = 10
    shapes = [(3, ), (4, )]
    behavior_spec = BehaviorSpec(shapes, ActionType.CONTINUOUS, 10)
    ap_list = generate_list_agent_proto(n_agents, shapes)
    decision_steps, terminal_steps = steps_from_proto(ap_list, behavior_spec)
    masks = decision_steps.action_mask
    assert masks is None
コード例 #3
0
def test_action_masking_continuous():
    n_agents = 10
    shapes = [(3, ), (4, )]
    behavior_spec = BehaviorSpec(create_observation_specs_with_shapes(shapes),
                                 ActionSpec.create_continuous(10))
    ap_list = generate_list_agent_proto(n_agents, shapes)
    decision_steps, terminal_steps = steps_from_proto(ap_list, behavior_spec)
    masks = decision_steps.action_mask
    assert masks is None
コード例 #4
0
def test_action_masking_discrete_1():
    n_agents = 10
    shapes = [(3, ), (4, )]
    behavior_spec = BehaviorSpec(shapes, ActionType.DISCRETE, (10, ))
    ap_list = generate_list_agent_proto(n_agents, shapes)
    decision_steps, terminal_steps = steps_from_proto(ap_list, behavior_spec)
    masks = decision_steps.action_mask
    assert isinstance(masks, list)
    assert len(masks) == 1
    assert masks[0].shape == (n_agents / 2, 10)
    assert masks[0][0, 0]
コード例 #5
0
def test_action_masking_discrete_2():
    n_agents = 10
    shapes = [(3, ), (4, )]
    behavior_spec = BehaviorSpec(shapes, ActionSpec.create_discrete((2, 2, 6)))
    ap_list = generate_list_agent_proto(n_agents, shapes)
    decision_steps, terminal_steps = steps_from_proto(ap_list, behavior_spec)
    masks = decision_steps.action_mask
    assert isinstance(masks, list)
    assert len(masks) == 3
    assert masks[0].shape == (n_agents / 2, 2)
    assert masks[1].shape == (n_agents / 2, 2)
    assert masks[2].shape == (n_agents / 2, 6)
    assert masks[0][0, 0]
コード例 #6
0
def test_action_masking_discrete():
    n_agents = 10
    shapes = [(3, ), (4, )]
    behavior_spec = BehaviorSpec(create_observation_specs_with_shapes(shapes),
                                 ActionSpec.create_discrete((7, 3)))
    ap_list = generate_list_agent_proto(n_agents, shapes)
    decision_steps, terminal_steps = steps_from_proto(ap_list, behavior_spec)
    masks = decision_steps.action_mask
    assert isinstance(masks, list)
    assert len(masks) == 2
    assert masks[0].shape == (n_agents / 2, 7)  # half agents are done
    assert masks[1].shape == (n_agents / 2, 3)  # half agents are done
    assert masks[0][0, 0]
    assert not masks[1][0, 0]
    assert masks[1][0, 1]
コード例 #7
0
 def _update_state(self, output: UnityRLOutputProto) -> None:
     """
     Collects experience information from all external brains in environment at current step.
     """
     for brain_name in self._env_specs.keys():
         if brain_name in output.agentInfos:
             agent_info_list = output.agentInfos[brain_name].value
             self._env_state[brain_name] = steps_from_proto(
                 agent_info_list, self._env_specs[brain_name]
             )
         else:
             self._env_state[brain_name] = (
                 DecisionSteps.empty(self._env_specs[brain_name]),
                 TerminalSteps.empty(self._env_specs[brain_name]),
             )
     self._side_channel_manager.process_side_channel_message(output.side_channel)
コード例 #8
0
def make_demo_buffer(
    pair_infos: List[AgentInfoActionPairProto],
    behavior_spec: BehaviorSpec,
    sequence_length: int,
) -> AgentBuffer:
    # Create and populate buffer using experiences
    demo_raw_buffer = AgentBuffer()
    demo_processed_buffer = AgentBuffer()
    for idx, current_pair_info in enumerate(pair_infos):
        if idx > len(pair_infos) - 2:
            break
        next_pair_info = pair_infos[idx + 1]
        current_decision_step, current_terminal_step = steps_from_proto(
            [current_pair_info.agent_info], behavior_spec
        )
        next_decision_step, next_terminal_step = steps_from_proto(
            [next_pair_info.agent_info], behavior_spec
        )
        previous_action = (
            np.array(
                pair_infos[idx].action_info.vector_actions_deprecated, dtype=np.float32
            )
            * 0
        )
        if idx > 0:
            previous_action = np.array(
                pair_infos[idx - 1].action_info.vector_actions_deprecated,
                dtype=np.float32,
            )

        next_done = len(next_terminal_step) == 1
        next_reward = 0
        if len(next_terminal_step) == 1:
            next_reward = next_terminal_step.reward[0]
        else:
            next_reward = next_decision_step.reward[0]
        current_obs = None
        if len(current_terminal_step) == 1:
            current_obs = list(current_terminal_step.values())[0].obs
        else:
            current_obs = list(current_decision_step.values())[0].obs

        demo_raw_buffer["done"].append(next_done)
        demo_raw_buffer["rewards"].append(next_reward)
        for i, obs in enumerate(current_obs):
            demo_raw_buffer[ObsUtil.get_name_at(i)].append(obs)
        if (
            len(current_pair_info.action_info.continuous_actions) == 0
            and len(current_pair_info.action_info.discrete_actions) == 0
        ):
            if behavior_spec.action_spec.continuous_size > 0:
                demo_raw_buffer["continuous_action"].append(
                    current_pair_info.action_info.vector_actions_deprecated
                )
            else:
                demo_raw_buffer["discrete_action"].append(
                    current_pair_info.action_info.vector_actions_deprecated
                )
        else:
            if behavior_spec.action_spec.continuous_size > 0:
                demo_raw_buffer["continuous_action"].append(
                    current_pair_info.action_info.continuous_actions
                )
            if behavior_spec.action_spec.discrete_size > 0:
                demo_raw_buffer["discrete_action"].append(
                    current_pair_info.action_info.discrete_actions
                )
        demo_raw_buffer["prev_action"].append(previous_action)
        if next_done:
            demo_raw_buffer.resequence_and_append(
                demo_processed_buffer, batch_size=None, training_length=sequence_length
            )
            demo_raw_buffer.reset_agent()
    demo_raw_buffer.resequence_and_append(
        demo_processed_buffer, batch_size=None, training_length=sequence_length
    )
    return demo_processed_buffer