コード例 #1
0
ファイル: metrics.py プロジェクト: sankalp-s/mlbench-core
class TopKAccuracy(object):
    r"""Top K accuracy of an output.

    Counts a prediction as correct if the target value is in the top ``k``
    predictions, false otherwise, and returns the number of correct
    instances relative to total instances (0.0 to 100.0).

    Args:
        topk (int, optional): The number of top predictions to consider.
            Default: ``1``

    """
    def __init__(self, topk=1):
        self.topk = topk
        self.reset()

    def __call__(self, output, target):
        """Computes the precision@k for the specified values of k

        Args:
            output (:obj:`torch.Tensor`): Predictions of a model
            target (:obj:`torch.Tensor`): Target labels

        Example:
                >>> m = nn.Softmax()
                >>> input = torch.randn(10, 50)
                >>> preds = m(input)
                >>> targets = torch.randint(0, 1, (10,50))
                >>> topk = TopKAccuracy(5)
                >>> precision = topk(preds, targets)

        Returns:
            float
        """
        batch_size = target.size(0)

        _, pred = output.topk(self.topk, 1, True, True)
        pred = pred.t()
        correct = pred.eq(target.view(1, -1).expand_as(pred))
        correct_k = correct[:self.topk].view(-1).float().sum(0, keepdim=True)
        return correct_k.mul_(100.0 / batch_size)

    def reset(self):
        """Reset metric tracking stats"""
        self.top = AverageMeter()

    def update(self, prec, size):
        """Add new measurement to running stats"""
        self.top.update(prec, size)

    def average(self):
        """Average stats."""
        return global_average(self.top.sum, self.top.count)

    @property
    def name(self):
        """str: Name of this metric."""
        return "Prec@{}".format(self.topk)
コード例 #2
0
def validation_round(
    session,
    validation_set_init_op,
    loss_op,
    metrics,
    batch_size,
    num_batches_per_epoch_for_validation,
    tracker,
):
    """ Handles one full iteration of validation on the whole validation set.

    Args:
        session (obj): The tensorflow session
        validation_set_init_op (obj): The trainset initialisation tf operation
        loss_op (obj): The tensorflow loss operation
        metrics (list): List of metrics to track
        batch_size (int): The batch size
        num_batches_per_epoch_for_validation (int): Maximum number of batches to validate
            for per epoch, default: `None` (all batches)
        tracker (`obj`:mlbench_core.utils.Tracker): Tracker object to use
    """
    session.run(validation_set_init_op)
    tracker.validation()

    loss_meter = AverageMeter()
    metrics_meter = [AverageMeter() for _ in metrics]

    for i_batch in range(num_batches_per_epoch_for_validation):
        out = session.run({
            "metrics": [m.metric_op for m in metrics],
            "loss": loss_op
        })

        # Update tracker
        loss_meter.update(out["loss"], n=batch_size)
        for meter, o in zip(metrics_meter, out["metrics"]):
            meter.update(o, n=batch_size)

        logging.debug("{}/{} Validation loss={:10.3e} | metrics: [{}]".format(
            tracker.current_epoch,
            i_batch,
            loss_meter.avg,
            ",".join([format(m.avg, "10.3e") for m in metrics_meter]),
        ))

    tracker.record_loss(loss_meter.avg, log_to_api=True)

    if tracker.rank == 0:
        tracker.record_stat("global_loss", loss_meter.avg, log_to_api=True)

    for i, metric, meter in zip(range(len(metrics)), metrics, metrics_meter):
        tracker.record_metric(metric, meter.avg, log_to_api=True)

        if tracker.rank == 0:
            tracker.record_stat("global_{}".format(metric.name),
                                meter.avg,
                                log_to_api=True)
コード例 #3
0
    def train_one_epoch(self, tracker):
        """Train a model for an epoch and use tracker to log stats."""
        logging.info("Initialize training dataset.")
        self.sess.run(self.train_set_init_op)

        loss_meter = AverageMeter()
        metrics_meter = [AverageMeter() for _ in self.metrics]

        for i_batch in range(self.num_batches_per_epoch_for_train):
            # for i_batch in range(1):
            tracker.batch_stats = [("start", time.time())]

            out = self.sess.run({
                "metrics": [m['value'] for m in self.metrics],
                "loss": self.loss,
                "train_op": self.train_op,
            })

            tracker.batch_stats.append(('end', time.time()))

            # Update tracker
            loss_meter.update(out["loss"], n=self.batch_size)
            for meter, o in zip(metrics_meter, out['metrics']):
                meter.update(o, n=self.batch_size)

            # Print logging information.
            logging.debug(
                "E{}:B{}/{} loss={:10.3e} | metrics: [{}] | best epoch {} ({:10.3e})"
                .format(
                    tracker.current_epoch, i_batch,
                    self.num_batches_per_epoch_for_train, loss_meter.avg,
                    ",".join([format(m.avg, "10.3e") for m in metrics_meter]),
                    tracker.best_epoch, tracker.best_epoch_value))

        # Record training loss and metrics.
        tracker.cumu_time_train.append(tracker.batch_stats[-1][1] -
                                       tracker.batch_stats[0][1])
        LogMetrics.log(self.run_id,
                       self.rank,
                       tracker.current_epoch,
                       'train_loss',
                       loss_meter.avg,
                       tracker=tracker,
                       time=sum(tracker.cumu_time_train))
        for metric, meter in zip(self.metrics, metrics_meter):
            LogMetrics.log(self.run_id,
                           self.rank,
                           tracker.current_epoch,
                           'train_' + metric['name'],
                           meter.avg,
                           tracker=tracker,
                           time=sum(tracker.cumu_time_train))

        logging.info("Finish training for one epoch.")
コード例 #4
0
ファイル: controlflow.py プロジェクト: ineiti/mlbench-core
def _validate(
    dataloader,
    model,
    loss_function,
    metrics,
    dtype,
    transform_target_type=None,
    use_cuda=False,
    max_batch_per_epoch=None,
):
    """Evaluate the model on the test dataset.

    Args:
        dataloader (:obj:`torch.utils.data.DataLoader`): The validation set
        model (`obj`:torch.nn.Module): The model to train
        loss_function (`obj`:torch.nn.Module): The loss function
        metrics (list): List of metrics to track
        dtype (str): The datatype to use, one of `fp32`or `fp64`
        transform_target_type (str): Datatype to convert data to, default: `None`
        use_cuda (bool): Whether to use GPU for training, default: `False`
        max_batch_per_epoch (int): Maximum number of batches tot rain for per epoch,
                                   default: `None` (all batches)
        """
    # Initialize the accumulators for loss and metrics
    losses = AverageMeter()
    for metric in metrics:
        metric.reset()

    # Each worker computer their own losses and metrics
    with torch.no_grad():
        data_iter = iterate_dataloader(
            dataloader, dtype, max_batch_per_epoch, use_cuda, transform_target_type
        )

        for data, target in data_iter:
            # Inference
            output = model(data)

            # Compute loss
            loss = loss_function(output, target)

            # Update loss
            losses.update(loss.item(), data.size(0))

            # Update metrics
            for metric in metrics:
                metric_value = metric(loss, output, target)
                metric.update(metric_value, data.size(0))

    # Aggregate metrics and loss for all workers
    metrics_averages = {metric: metric.average().item() for metric in metrics}
    loss_average = global_average(losses.sum, losses.count).item()
    return metrics_averages, loss_average
コード例 #5
0
    def valid_one_epoch(self, tracker):
        self.sess.run(self.validation_set_init_op)

        loss_meter = AverageMeter()
        metrics_meter = [AverageMeter() for _ in self.metrics]

        for i_batch in range(self.num_batches_per_epoch_for_validation):
            out = self.sess.run({
                "metrics": [m['value'] for m in self.metrics],
                "loss": self.loss
            })

            # Update tracker
            loss_meter.update(out["loss"], n=self.batch_size)
            for meter, o in zip(metrics_meter, out['metrics']):
                meter.update(o, n=self.batch_size)

            logging.debug(
                "{}/{} Validation loss={:10.3e} | metrics: [{}]".format(
                    tracker.current_epoch, i_batch, loss_meter.avg,
                    ",".join([format(m.avg, "10.3e") for m in metrics_meter])))

        LogMetrics.log(self.run_id,
                       self.rank,
                       tracker.current_epoch,
                       'val_loss',
                       loss_meter.avg,
                       tracker=tracker,
                       time=sum(tracker.cumu_time_train))

        for i, metric, meter in zip(range(len(self.metrics)), self.metrics,
                                    metrics_meter):
            metric_name = 'val_' + metric['name']

            # Here we implicitly assume the larger metrics value means better results
            if ((i == 0) and
                (len([r for r in tracker.records if r['name'] == metric_name])
                 == 0 or meter.avg > max([
                     float(r.value)
                     for r in tracker.records if r['name'] == metric_name
                 ]))):
                tracker.best_epoch = tracker.current_epoch
                tracker.best_epoch_value = meter.avg

            LogMetrics.log(self.run_id,
                           self.rank,
                           tracker.current_epoch,
                           metric_name,
                           meter.avg,
                           tracker=tracker,
                           time=sum(tracker.cumu_time_train))
コード例 #6
0
def validation_round(
    val_loader,
    metrics,
    model,
    loss_func,
    iter_size,
    translator,
    tracker=None,
    use_cuda=False,
):
    # Set tracker and model in eval mode
    model.eval()
    if tracker:
        tracker.validation()
        tracker.validation_start()

    losses = AverageMeter()

    # Reset metrics
    for metric in metrics:
        metric.reset()

    with torch.no_grad():
        for (data, target) in val_loader:
            data, target = prepare_batch(data, target, use_cuda=use_cuda)
            output = compute_model_output(model, data, target)

            # Compute loss
            loss, loss_per_token = compute_loss(data, target, output,
                                                loss_func, iter_size)

            # Update loss
            losses.update(loss_per_token, 1)

            # Update metrics
            translated, targets = translator.translate(data, target)
            for metric in metrics:
                metric_value = metric(translated, targets)
                size = data[0].shape[1]

                metric.update(metric_value, size)

    metrics_averages = {metric: metric.average().item() for metric in metrics}
    loss_average = global_average(losses.sum, losses.count).item()

    if tracker:
        tracker.validation_end()
    return metrics_averages, loss_average
コード例 #7
0
class MLBenchMetric(object):
    def __init__(self):
        self.average_meter = AverageMeter()

    @abstractmethod
    def __call__(self, loss, output, target):
        pass

    def reset(self):
        self.average_meter = AverageMeter()

    def update(self, perc, size):
        self.average_meter.update(perc, size)

    def average(self):
        return global_average(self.average_meter.sum, self.average_meter.count)
コード例 #8
0
def validation_round(loader, metrics, criterion, translator, tracker, use_cuda=False):
    """Performs one round of validation for the Transformer model

    Args:
        loader (:obj:`torch.utils.data.DataLoader`): Data loader
        metrics (list): List of metrics for evaluation
        criterion (:obj:`torch.nn.Module): Loss function
        translator (:obj:`mlbench_core.models.pytorch.transformer.SequenceGenerator`): Translator module
        tracker (:obj:`mlbench_core.utils.Tracker`): Current Tracker
        use_cuda (bool): Use GPU acceleration. Default: `False`.

    Returns:
        (dict of :obj:`mlbench_core.evaluation.pytorch.MLBenchMetric`: float, float):
            The metrics averages over all workers, and the loss average.
    """
    model = translator.model
    model.eval()
    tracker.validation()
    tracker.validation_start()

    losses = AverageMeter()
    for metric in metrics:
        metric.reset()

    with torch.no_grad():
        for batch in loader:
            batch = prepare_batch(batch, use_cuda=use_cuda)
            output = model(**batch["net_input"])

            loss, sample_size = compute_loss(batch, output, criterion)

            losses.update(loss.item() / sample_size, 1)

            translated, targets = translator.translate_batch(batch)
            for metric in metrics:
                metric_value = metric(translated, targets)
                size = batch["target"].size(0)  # Number of translated sentences
                metric.update(metric_value, size)

    metric_averages = {metric: metric.average().item() for metric in metrics}
    loss_average = global_average(losses.sum, losses.count)

    tracker.validation_end()

    return metric_averages, loss_average
コード例 #9
0
    def validate(self, dataloader):
        r"""Validate the quality of the model in terms of loss and metrics.

        Args:
            dataloader (:obj:`torch.utils.data.DataLoader`): The validation set
        """
        # Turn on evaluation mode for the model
        self.model.eval()

        # Initialize the accumulators for loss and metrics
        losses = AverageMeter()
        for metric in self.metrics:
            metric.reset()

        # Each worker computer their own losses and metrics
        with torch.no_grad():
            data_iter = iterate_dataloader(dataloader, self.dtype,
                                           self.max_batch_per_epoch,
                                           self.use_cuda,
                                           self.transform_target_type)

            for data, target in data_iter:
                # Inference
                output = self.model(data)

                # Compute loss
                loss = self.loss_function(output, target)

                # Update loss
                losses.update(loss.item(), data.size(0))

                # Update metrics
                for metric in self.metrics:
                    metric_value = metric(output, target)
                    metric.update(metric_value, data.size(0))

        # Aggregate metrics and loss for all workers
        metrics_averages = {
            metric.name: metric.average().item()
            for metric in self.metrics
        }
        loss_average = global_average(losses.sum, losses.count).item()
        return metrics_averages, loss_average
コード例 #10
0
def validation_round(loader,
                     metrics,
                     criterion,
                     translator,
                     tracker=None,
                     use_cuda=False):
    model = translator.model
    model.eval()
    if tracker:
        tracker.validation()
        tracker.validation_start()

    losses = AverageMeter()
    for metric in metrics:
        metric.reset()

    with torch.no_grad():
        for batch in loader:
            batch = prepare_batch(batch, use_cuda=use_cuda)
            output = model(**batch["net_input"])

            loss, sample_size = compute_loss(batch, output, criterion)

            losses.update(loss.item() / sample_size, 1)

            translated, targets = translator.translate_batch(batch)
            for metric in metrics:
                metric_value = metric(loss.item(), translated, targets)
                size = batch["target"].size(
                    0)  # Number of translated sentences
                metric.update(metric_value, size)

    metric_averages = {metric: metric.average().item() for metric in metrics}
    loss_average = global_average(losses.sum, losses.count)

    if tracker:
        tracker.validation_end()

    return metric_averages, loss_average
コード例 #11
0
    def train_epoch(self, dataloader):
        """Train model for one epoch of data.

        Args:
            dataloader (:obj:`torch.utils.data.DataLoader`): The train set
        """
        self.tracker.epoch_stats = {
            k: AverageMeter()
            for k in ["loss"] + [m.name for m in self.metrics]
        }
        # switch to train mode
        self.model.train()
        data_iter = iterate_dataloader(dataloader, self.dtype,
                                       self.max_batch_per_epoch, self.use_cuda,
                                       self.transform_target_type)

        for batch_idx, (data, target) in enumerate(data_iter):
            self.tracker.batch_stats = [("start", time.time())]

            if self.schedule_per == 'batch':
                self.scheduler.step()

            # Clear gradients in the optimizer.
            self.optimizer.zero_grad()
            self.tracker.batch_stats.append(('init', time.time()))

            # Compute the output
            output = self.model(data)
            self.tracker.batch_stats.append(('fwd_pass', time.time()))

            # Compute the loss
            loss = self.loss_function(output, target)
            self.tracker.batch_stats.append(('comp_loss', time.time()))

            # Backprop
            loss.backward()
            self.tracker.batch_stats.append(('backprop', time.time()))

            # Aggregate gradients/parameters from all workers and apply updates to model
            self.optimizer.step()
            self.tracker.batch_stats.append(('opt_step', time.time()))

            self.record_train_batch_stats(batch_idx, loss.item(), output,
                                          target)
コード例 #12
0
def train_round(
    session,
    train_set_init_op,
    train_op,
    loss_op,
    metrics,
    batch_size,
    num_batches_per_epoch_for_train,
    tracker,
    lr_scheduler_level=None,
    lr_tensor=None,
):
    """ Performs num_batches_per_epoch_for_train batches of training (or full trainset if
    not specified)

    Args:
        session (obj): The tensorflow session
        train_set_init_op (obj): The trainset initialisation tf operation
        train_op (obj): The tensorflow training operation
        loss_op (obj): The tensorflow loss operation
        metrics (list): List of metrics to track
        batch_size (int): The batch size
        num_batches_per_epoch_for_train (int): Maximum number of batches tot rain for per epoch,
                                   default: `None` (all batches)
        tracker (`obj`:mlbench_core.utils.Tracker): Tracker object to use
        lr_scheduler_level (str): Learning Rate scheduler mode, one of `batch` or `epoch`
        lr_tensor (obj): The learningrate schedule tensorflow operation
    """
    logging.info("Initialize training dataset.")
    session.run(train_set_init_op)
    tracker.train()

    loss_meter = AverageMeter()
    metrics_meter = [AverageMeter() for _ in metrics]

    if lr_scheduler_level == "epoch" and lr_tensor is not None:
        lr = session.run(lr_tensor)
        logging.debug("Epoch {} Learning Rate : {:10.3e}".format(
            tracker.current_epoch, lr))

    for i_batch in range(num_batches_per_epoch_for_train):
        # for i_batch in range(1):
        tracker.batch_start()

        if lr_scheduler_level == "batch" and lr_tensor is not None:
            lr = session.run(lr_tensor)
            logging.debug("Epoch {} Learning Rate : {:10.3e}".format(
                tracker.current_epoch, lr))

        out = session.run({
            "metrics": [m.metric_op for m in metrics],
            "loss": loss_op,
            "train_op": train_op,
        })

        tracker.batch_end()

        # Update tracker
        loss_meter.update(out["loss"], n=batch_size)
        tracker.record_loss(loss_meter.avg, log_to_api=True)

        for metric, meter, o in zip(metrics, metrics_meter, out["metrics"]):
            meter.update(o, n=batch_size)
            tracker.record_metric(metric, meter.avg, log_to_api=True)

        # Print logging information.
        progress = i_batch / num_batches_per_epoch_for_train
        progress += tracker.current_epoch

        status = "Epoch {:5.2f} Batch {:4}: ".format(progress, i_batch)

        logging.info(status + str(tracker))

    # Record training loss and metrics.
    tracker.record_loss(loss_meter.avg, log_to_api=True)

    for metric, meter in zip(metrics, metrics_meter):
        tracker.record_metric(metric, meter.avg, log_to_api=True)

    logging.info("Finish training for one epoch.")
コード例 #13
0
ファイル: metrics.py プロジェクト: sankalp-s/mlbench-core
 def reset(self):
     """Reset metric tracking stats"""
     self.top = AverageMeter()
コード例 #14
0
def validation_round(
    val_set, model, batch_size, metrics, loss_function, tracker, use_cuda=False
):
    """Performs a validation round

    Args:
        val_set (:obj:): Validation set
        model (:obj:`torch.nn.Module`): Model to evaluate
        batch_size (int): Validation batch size
        metrics (list): List of metrics to compute
        loss_function (:obj:`torch.nn.Module`): Loss function
        tracker (:obj:`mlbench_core.utils.Tracker`): Tracker object
        use_cuda (bool): Use GPU acceleration

    Returns:
        (dict, float): Metric averages and total loss average
    """
    # finish one epoch training and to decide if we want to val our model.
    tracker.validation()
    tracker.validation_start()

    # each worker finish one epoch training.
    model.eval()

    losses = AverageMeter()
    for metric in metrics:
        metric.reset()

    # Each worker computer their own losses and metrics
    with torch.no_grad():
        hidden = model.init_hidden(batch_size)

        num_batches = val_set.num_batches()
        for batch_idx in range(num_batches):
            data, target = val_set.get_batch(batch_idx, cuda=use_cuda)
            batch_seq_len = data.size(0)
            # Inference
            output, hidden = model(data, hidden)

            # Compute loss
            loss = loss_function(output, target)

            # Update loss
            losses.update(loss.item(), batch_seq_len)

            hidden = repackage_hidden(hidden)

            # Update metrics
            for metric in metrics:
                metric_value = metric(output, target)
                metric.update(metric_value, 1)

    # Aggregate metrics and loss for all workers
    loss_average = global_average(losses.sum, losses.count)
    metrics_averages = {
        metric: torch.exp(loss_average).item()
        if metric.name == "Perplexity"
        else metric.average().item()
        for metric in metrics
    }

    logger.info(
        "Got loss {}, avg metric={}".format(
            loss_average,
            [m.average().item() for m in metrics if m.name == "Perplexity"][0],
        )
    )
    tracker.validation_end()

    return metrics_averages, loss_average.item()
コード例 #15
0
 def reset(self):
     self.average_meter = AverageMeter()
コード例 #16
0
 def __init__(self):
     self.average_meter = AverageMeter()
コード例 #17
0
def validation_round(
    dataloader,
    model,
    loss_function,
    metrics,
    dtype,
    tracker=None,
    transform_target_type=False,
    use_cuda=False,
    max_batches=None,
):
    """Evaluate the model on the test dataset.

    Args:
        dataloader (`obj`:torch.utils.data.DataLoader): The validation set
        model (`obj`:torch.nn.Module): The model to train
        loss_function (`obj`:torch.nn.Module): The loss function
        metrics (list): List of metrics to track
        dtype (str): The datatype to use, one of `fp32`or `fp64`
        tracker (`obj`:mlbench_core.utils.Tracker | None): Tracker object to use.
        transform_target_type (bool): Convert target to `dtype`. Default `False`
        use_cuda (bool): Whether to use GPU for training, default: `False`
        max_batches (int | None): Maximum number of batches to validate on

    Returns:
          (dict, float): Dictionary of average of each metric, and average validation loss
    """

    model.eval()
    if tracker:
        tracker.validation()
        tracker.validation_start()

    # Initialize the accumulators for loss and metrics
    losses = AverageMeter()
    for metric in metrics:
        metric.reset()

    # Each worker computer their own losses and metrics
    with torch.no_grad():

        data_iter = iterate_dataloader(dataloader, dtype, max_batches,
                                       use_cuda, transform_target_type)

        for data, target in data_iter:
            output = model(data)

            # Compute loss
            loss = loss_function(output, target)

            # Update loss
            losses.update(loss.item(), data.size(0))

            # Update metrics
            for metric in metrics:
                metric_value = metric(output, target)
                metric.update(metric_value, data.size(0))

    # Aggregate metrics and loss for all workers
    metrics_averages = {metric: metric.average().item() for metric in metrics}
    loss_average = global_average(losses.sum, losses.count).item()

    if tracker:
        tracker.validation_end()
    return metrics_averages, loss_average