# coding: utf-8 import numpy as np from runner import Runner from mlcin.prototypes.rps import RandomPrototypeSelection from mlcin.utils.keel import load_dataset from mlcin.utils.graphics import plot_and_save if __name__ == '__main__': # creating prototype generation object rps = RandomPrototypeSelection() datasets = ['banana', 'normal', 'normal_multimodal'] for dataset in datasets: X_orig, y_orig = load_dataset('datasets/artificial/' + dataset + '.data') y_orig = np.asarray(y_orig, dtype=int) rps.fit(X_orig, y_orig) X, y = rps.reduce_data() print dataset + '\treduction: %.2f' % (1.0 - float(y.shape[0])/len(y_orig)) plot_and_save(X_orig, y_orig, title='ORIGINAL', filename='images/ORIG_' + dataset + '.png') plot_and_save(X, y, title='RSP', filename='images/RSP_' + dataset + '.png')
def get_prototypes(self, X, y): rps = RandomPrototypeSelection() rps.fit(X, y).reduce_data() return rps.get_prototypes()
def get_prototypes(self, X, y): rps = RandomPrototypeSelection() rps.fit(X, y).reduce_data() print rps.get_prototypes() return rps.get_prototypes()
# coding: utf-8 import numpy as np from runner import Runner from mlcin.prototypes.rps import RandomPrototypeSelection from mlcin.utils.keel import load_dataset from mlcin.utils.graphics import plot_and_save if __name__ == '__main__': # creating prototype generation object rps = RandomPrototypeSelection() datasets = ['banana', 'normal', 'normal_multimodal'] for dataset in datasets: X_orig, y_orig = load_dataset('datasets/artificial/' + dataset + '.data') y_orig = np.asarray(y_orig, dtype=int) rps.fit(X_orig, y_orig) X, y = rps.reduce_data() print dataset + '\treduction: %.2f' % (1.0 - float(y.shape[0]) / len(y_orig)) plot_and_save(X_orig, y_orig, title='ORIGINAL', filename='images/ORIG_' + dataset + '.png') plot_and_save(X, y, title='RSP', filename='images/RSP_' + dataset + '.png')