def test_progress_bar(self): """ Tests that verbose=True prints out progress bar. """ # Initialize OLPS. olps9 = OLPS() # Allocates asset prices to OLPS with verbose=True. olps9.allocate(self.data, resample_by='M', verbose=True)
def test_olps_incorrect_data(self): """ Tests ValueError if the user inputted data is not a dataframe. """ with self.assertRaises(ValueError): # Initialize OLPS. olps3 = OLPS() # Running alloate will raise ValueError. olps3.allocate(self.data.values)
def test_olps_index_error(self): """ Tests ValueError if the passing dataframe is not indexed by date. """ # Initialize OLPS. olps4 = OLPS() # Reset index. data = self.data.reset_index() with self.assertRaises(ValueError): # Running allocate will raise ValueError. olps4.allocate(data)
def test_simplex_all_negatives(self): """ Tests case where negative weights have to be projected onto the simplex. """ # Initialize OLPS. olps10 = OLPS() # Allocates asset prices to OLPS with verbose=True. olps10.allocate(self.data, resample_by='M') # Negative weights. neg_weight = np.array([-10e20, -10e20]) np.testing.assert_almost_equal(olps10._simplex_projection(neg_weight), np.array([0.5, 0.5]))
def test_uniform_weight(self): """ Tests that uniform weights return equal allocation of weights. """ # Initialize OLPS. olps6 = OLPS() # Allocates asset prices to OLPS. olps6.allocate(self.data, resample_by='M') # Calculate uniform weights. olps6_uni_weight = olps6._uniform_weight() # Calculated weights should be equal. np.testing.assert_almost_equal(olps6_uni_weight, np.array(olps6.all_weights)[0])
def test_simplex_projection(self): """ Tests edge cases where the inputted weights already satisfy the simplex requirements. """ # Initialize OLPS. olps8 = OLPS() # Allocates asset prices to OLPS. olps8.allocate(self.data, resample_by='M') # Initialize uniform weights. weights = olps8._uniform_weight() # Project uniform weights to simplex domain. simplex_weights = olps8._simplex_projection(weights) # The two weights should be the same value. np.testing.assert_almost_equal(weights, simplex_weights)
def test_normalize(self): """ Tests that weights sum to 1. """ # Initialize OLPS. olps7 = OLPS() # Allocates asset prices to OLPS. olps7.allocate(self.data, resample_by='M') # Test normalization on a random weight. random_weight = np.ones(3) # Use method to normalize random_weight. normalized_weight = olps7._normalize(random_weight) # Compare normalized value and manually calculated value. np.testing.assert_almost_equal(normalized_weight, random_weight / 3)
def test_olps_solution(self): """ Test the calculation of OLPS weights. """ # Initialize OLPS. olps = OLPS() # Allocates asset prices to OLPS. olps.allocate(self.data) # Create np.array of all_weights. all_weights = np.array(olps.all_weights) # Check if all weights sum to 1. for i in range(all_weights.shape[0]): weights = all_weights[i] assert (weights >= 0).all() assert len(weights) == self.data.shape[1] np.testing.assert_almost_equal(np.sum(weights), 1)
def test_user_weight(self): """ Tests that users can input their own weights for OLPS. """ # Initialize user inputted weights. weight = np.zeros(self.data.shape[1]) weight[0] = 1 # Initialize OLPS. olps5 = OLPS() # Allocates asset prices to OLPS. olps5.allocate(self.data, weights=weight, resample_by='M') # Create np.array of all_weights. all_weights = np.array(olps5.all_weights) # Check if all weights sum to 1. for i in range(all_weights.shape[0]): weights = all_weights[i] assert (weights >= 0).all() assert len(weights) == self.data.shape[1] np.testing.assert_almost_equal(np.sum(weights), 1)
def test_olps_weight(self): """ Tests that the user inputted weights have matching dimensions as the data's dimensions and ValueError if the user inputted weights do not sum to one. """ # Initialize OLPS. olps1 = OLPS() # Raise error if weight does not match data.shape[1]. with self.assertRaises(ValueError): olps1.allocate(self.data, weights=[1]) with self.assertRaises(AssertionError): # Initialize OLPS. olps2 = OLPS() # Initialize weights that do not sum to 1. weight = np.zeros(self.data.shape[1]) weight[0], weight[1] = 0.4, 0.4 # Running allocate will raise ValueError. olps2.allocate(self.data, weight)
def test_null_zero_date(self): """ Tests ValueError for data with values of null or zero. """ # Create null data. null_data = self.data.copy() null_data[:] = np.nan # Create zero data. zero_data = self.data.copy() zero_data[:] = 0 # Initialize OLPS. olps11 = OLPS() olps12 = OLPS() with self.assertRaises(ValueError): olps11.allocate(null_data) with self.assertRaises(ValueError): olps12.allocate(zero_data)