def test_all_inputs_none(self): """ Test allocation when all inputs are None. """ with self.assertRaises(ValueError): herc = HierarchicalEqualRiskContribution() herc.allocate(asset_names=self.data.columns)
def test_value_error_for_non_date_index(self): """ Test ValueError on passing dataframe not indexed by date. """ with self.assertRaises(ValueError): herc = HierarchicalEqualRiskContribution() data = self.data.reset_index() herc.allocate(asset_prices=data, asset_names=self.data.columns)
def test_value_error_for_non_dataframe_input(self): """ Test ValueError on passing non-dataframe input. """ with self.assertRaises(ValueError): herc = HierarchicalEqualRiskContribution() herc.allocate(asset_prices=self.data.values, asset_names=self.data.columns)
def test_value_error_with_no_asset_names(self): """ Test ValueError when not supplying a list of asset names and no other input """ with self.assertRaises(ValueError): herc = HierarchicalEqualRiskContribution() returns = ReturnsEstimators().calculate_returns( asset_prices=self.data) herc.allocate(asset_returns=returns.values, optimal_num_clusters=6)
def test_value_error_for_risk_measure(self): """ Test HERC when a different allocation metric string is used. """ with self.assertRaises(ValueError): herc = HierarchicalEqualRiskContribution() herc.allocate(asset_names=self.data.columns, asset_prices=self.data, risk_measure='random_metric')
def test_value_error_for_expected_shortfall(self): """ Test ValueError when expected_shortfall is the allocation metric, no asset_returns dataframe is given and no asset_prices dataframe is passed. """ with self.assertRaises(ValueError): herc = HierarchicalEqualRiskContribution() herc.allocate(asset_names=self.data.columns, optimal_num_clusters=5, risk_measure='expected_shortfall')
def test_no_asset_names(self): """ Test HERC when not supplying a list of asset names. """ herc = HierarchicalEqualRiskContribution() herc.allocate(asset_prices=self.data, optimal_num_clusters=6) weights = herc.weights.values[0] assert (weights >= 0).all() assert len(weights) == self.data.shape[1] np.testing.assert_almost_equal(np.sum(weights), 1)
def test_no_asset_names_with_asset_returns(self): """ Test HERC when not supplying a list of asset names and when the user passes asset_returns. """ herc = HierarchicalEqualRiskContribution() returns = ReturnsEstimators().calculate_returns(asset_prices=self.data) herc.allocate(asset_returns=returns, optimal_num_clusters=6) weights = herc.weights.values[0] assert (weights >= 0).all() assert len(weights) == self.data.shape[1] np.testing.assert_almost_equal(np.sum(weights), 1)
def test_herc_with_input_as_returns(self): """ Test HERC when passing asset returns dataframe as input. """ herc = HierarchicalEqualRiskContribution() returns = ReturnsEstimators().calculate_returns(asset_prices=self.data) herc.allocate(asset_returns=returns, asset_names=self.data.columns) weights = herc.weights.values[0] assert (weights >= 0).all() assert len(weights) == self.data.shape[1] np.testing.assert_almost_equal(np.sum(weights), 1)
def test_dendrogram_plot(self): """ Test if dendrogram plot object is correctly rendered. """ herc = HierarchicalEqualRiskContribution() herc.allocate(asset_prices=self.data, optimal_num_clusters=5) dendrogram = herc.plot_clusters(assets=self.data.columns) assert dendrogram.get('icoord') assert dendrogram.get('dcoord') assert dendrogram.get('ivl') assert dendrogram.get('leaves') assert dendrogram.get('color_list')
def test_quasi_diagnalization(self): """ Test the quasi-diagnalisation step of HERC algorithm. """ herc = HierarchicalEqualRiskContribution() herc.allocate(asset_prices=self.data, linkage='single', optimal_num_clusters=5, asset_names=self.data.columns) assert herc.ordered_indices == [ 13, 9, 10, 8, 14, 7, 1, 6, 4, 16, 3, 17, 12, 18, 22, 0, 15, 21, 11, 2, 20, 5, 19 ]
def test_herc_expected_shortfall(self): """ Test the weights calculated by the HERC algorithm - if all the weights are positive and their sum is equal to 1. """ herc = HierarchicalEqualRiskContribution() herc.allocate(asset_prices=self.data, asset_names=self.data.columns, optimal_num_clusters=5, risk_measure='expected_shortfall') weights = herc.weights.values[0] assert (weights >= 0).all() assert len(weights) == self.data.shape[1] np.testing.assert_almost_equal(np.sum(weights), 1)
def test_herc_with_input_as_covariance_matrix(self): """ Test HERC when passing a covariance matrix as input. """ herc = HierarchicalEqualRiskContribution() returns = ReturnsEstimators().calculate_returns(asset_prices=self.data) herc.allocate(asset_names=self.data.columns, covariance_matrix=returns.cov(), optimal_num_clusters=6, asset_returns=returns) weights = herc.weights.values[0] assert (weights >= 0).all() assert len(weights) == self.data.shape[1] np.testing.assert_almost_equal(np.sum(weights), 1)
def test_herc_with_asset_returns_as_none(self): """ Test HERC when asset returns are not required for calculating the weights. """ herc = HierarchicalEqualRiskContribution() returns = ReturnsEstimators().calculate_returns(asset_prices=self.data) herc.allocate(asset_names=self.data.columns, covariance_matrix=returns.cov(), optimal_num_clusters=5, risk_measure='equal_weighting') weights = herc.weights.values[0] assert (weights >= 0).all() assert len(weights) == self.data.shape[1] np.testing.assert_almost_equal(np.sum(weights), 1)
class HierarchicalEqualRiskContributionStrategy(object): def __init__(self): # Get the data: self.loadDirectory = os.path.expandvars( '${HOME}/Desktop/quant-research-env/DARWINStrategyContentSeries/Data/ClosePricePortfolio.csv' ) self.saveDirectory = os.path.expandvars( '${HOME}/Desktop/quant-research-env/DARWINStrategyContentSeries/OnlinePortfolioStrategies/_OPTIMIZATIONS/HERC/' ) self.DF_CLOSE = self._loadTechnicalDataset() def _loadTechnicalDataset(self): # Load it: ASSET_UNIVERSE = pd.read_csv(self.loadDirectory, index_col=0, parse_dates=True, infer_datetime_format=True) print('¡Asset Universe file LOADED!') return ASSET_UNIVERSE def _generateAllocations(self): # Create object: self.STRATEGY = HierarchicalEqualRiskContribution() # Allocate: self.STRATEGY.allocate( asset_names=self.DF_CLOSE.columns, asset_prices=self.DF_CLOSE, #risk_measure='expected_shortfall', risk_measure='conditional_drawdown_risk', linkage='ward') # Plot portfolio metrics: self._plotOptimalPortfolio() self._plotClusters() def _plotOptimalPortfolio(self): print( f'Optimal number of clusters: {self.STRATEGY.optimal_num_clusters}' ) # Get weights: weights = self.STRATEGY.weights y_pos = np.arange(len(weights.columns)) # Create the figure: f1, ax = plt.subplots(figsize=(10, 5)) # Create the plots: ax.bar(list(weights.columns), weights.values[0], label='Assets') plt.xticks(y_pos, rotation=45, size=10) plt.xticks(y_pos, rotation=45, size=10) ax.grid(True) plt.grid(linestyle='dotted') plt.xlabel('Assets', horizontalalignment='center', verticalalignment='center', fontsize=14, labelpad=20) plt.ylabel('Asset Weights', horizontalalignment='center', verticalalignment='center', fontsize=14, labelpad=20) ax.legend(loc='best') plt.title( f'Optimal portfolio for {self.STRATEGY.__class__.__name__} optimization' ) plt.subplots_adjust(left=0.09, bottom=0.20, right=0.94, top=0.90, wspace=0.2, hspace=0) f1.canvas.set_window_title('OPTIMIZATION METHODS') # In PNG: plt.savefig(self.saveDirectory + 'OptimalPortfolio.png') # Show: plt.show() def _plotClusters(self): # Create the figure: f1, ax = plt.subplots(figsize=(10, 5)) # Create the plots: self.STRATEGY.plot_clusters(self.DF_CLOSE.columns) ax.grid(True) plt.grid(linestyle='dotted') plt.title( f'Dendrogram for {self.STRATEGY.__class__.__name__} optimization') plt.xticks(rotation=45) plt.subplots_adjust(left=0.09, bottom=0.20, right=0.94, top=0.90, wspace=0.2, hspace=0) f1.canvas.set_window_title('OPTIMIZATION METHODS') # In PNG: plt.savefig(self.saveDirectory + 'Dendogram.png') # Show: plt.show() def _predictOutcome(self): pass