コード例 #1
0
ファイル: test_metric.py プロジェクト: tristaneljed/mlflow
    def test_creation_and_hydration(self):
        key = random_str()
        value = 10000
        ts = int(time.time())

        metric = Metric(key, value, ts)
        self._check(metric, key, value, ts)

        as_dict = {"key": key, "value": value, "timestamp": ts}
        self.assertEqual(dict(metric), as_dict)

        proto = metric.to_proto()
        metric2 = metric.from_proto(proto)
        self._check(metric2, key, value, ts)

        metric3 = Metric.from_dictionary(as_dict)
        self._check(metric3, key, value, ts)
コード例 #2
0
ファイル: file_store.py プロジェクト: zhangf911/mlflow
 def _get_metric_from_file(parent_path, metric_name):
     metric_data = read_file(parent_path, metric_name)
     if len(metric_data) == 0:
         raise Exception("Metric '%s' is malformed. No data found." %
                         metric_name)
     last_line = metric_data[-1]
     timestamp, val = last_line.strip().split(" ")
     return Metric(metric_name, float(val), int(timestamp))
コード例 #3
0
def _log_metric():
    request_message = _get_request_message(LogMetric())
    metric = Metric(request_message.key, request_message.value, request_message.timestamp)
    _get_store().log_metric(request_message.run_uuid, metric)
    response_message = LogMetric.Response()
    response = Response(mimetype='application/json')
    response.set_data(_message_to_json(response_message))
    return response
コード例 #4
0
 def test_weird_metric_names(self):
     WEIRD_METRIC_NAME = "this is/a weird/but valid metric"
     fs = FileStore(self.test_root)
     run_uuid = self.exp_data[0]["runs"][0]
     fs.log_metric(run_uuid, Metric(WEIRD_METRIC_NAME, 10, 1234))
     metric = fs.get_metric(run_uuid, WEIRD_METRIC_NAME)
     assert metric.key == WEIRD_METRIC_NAME
     assert metric.value == 10
     assert metric.timestamp == 1234
コード例 #5
0
    def from_proto(cls, proto):
        run_data = cls()
        # iterate proto and add metrics and params
        for proto_metric in proto.metrics:
            run_data._add_metric(Metric.from_proto(proto_metric))
        for proto_param in proto.params:
            run_data._add_param(Param.from_proto(proto_param))

        return run_data
コード例 #6
0
 def from_proto(cls, proto):
     run_data = cls()
     # iterate proto and add metrics, params, and tags
     for proto_metric in proto.metrics:
         run_data._add_metric(Metric.from_proto(proto_metric))
     for proto_param in proto.params:
         run_data._add_param(Param.from_proto(proto_param))
     for proto_tag in proto.tags:
         run_data._add_tag(RunTag.from_proto(proto_tag))
     return run_data
コード例 #7
0
def _log_metric():
    request_message = _get_request_message(LogMetric())
    metric = Metric(request_message.key, request_message.value,
                    request_message.timestamp)
    _get_store().log_metric(request_message.run_uuid, metric)
    response_message = LogMetric.Response()
    response = Response(mimetype='application/json')
    response.set_data(
        MessageToJson(response_message, preserving_proto_field_name=True))
    return response
コード例 #8
0
ファイル: util.py プロジェクト: iivalchev/ml_metrics
    def report_now(self, registry=None, timestamp=None):
        registry = registry or self.registry
        timestamp = timestamp or int(round(self.clock.time()))
        active_run = self.active_run or mlflow.active_run()
        metrics = (registry or self.registry).dump_metrics()

        for mkey, mdict in metrics.items():
            for mname, mvalue in mdict.items():
                active_run.log_metric(
                    Metric(f"{mkey}_{mname}", mvalue, timestamp))
コード例 #9
0
ファイル: file_store.py プロジェクト: zhangf911/mlflow
 def get_metric_history(self, run_uuid, metric_key):
     parent_path, metric_files = self._get_run_files(run_uuid, "metric")
     if metric_key not in metric_files:
         raise Exception("Metric '%s' not found under run '%s'" %
                         (metric_key, run_uuid))
     metric_data = read_file(parent_path, metric_key)
     rsl = []
     for pair in metric_data:
         ts, val = pair.strip().split(" ")
         rsl.append(Metric(metric_key, float(val), int(ts)))
     return rsl
コード例 #10
0
ファイル: __init__.py プロジェクト: zhao65515/mlflow
def log_metric(key, value):
    """
    Logs the passed-in metric under the current run, creating a run if necessary.
    :param key: Metric name (string)
    :param value: Metric value (float)
    """
    if not isinstance(value, numbers.Number):
        print("WARNING: The metric {}={} was not logged because the value is not a number.".format(
            key, value), file=sys.stderr)
        return
    _get_or_start_run().log_metric(Metric(key, value, int(time.time())))
コード例 #11
0
ファイル: rest_store.py プロジェクト: tristaneljed/mlflow
    def get_metric_history(self, run_uuid, metric_key):
        """
        Returns all logged value for a given metric.

        :param run_uuid: Unique identifier for run
        :param metric_key: Metric name within the run

        :return: A list of float values logged for the give metric if logged, else empty list
        """
        req_body = _message_to_json(GetMetricHistory(run_uuid=run_uuid, metric_key=metric_key))
        response_proto = self._call_endpoint(GetMetricHistory, req_body)
        return [Metric.from_proto(metric).value for metric in response_proto.metrics]
コード例 #12
0
ファイル: rest_store.py プロジェクト: tristaneljed/mlflow
    def get_metric(self, run_uuid, metric_key):
        """
        Returns the last logged value for a given metric.

        :param run_uuid: Unique identifier for run
        :param metric_key: Metric name within the run

        :return: A single float value for the give metric if logged, else None
        """
        req_body = _message_to_json(GetMetric(run_uuid=run_uuid, metric_key=metric_key))
        response_proto = self._call_endpoint(GetMetric, req_body)
        return Metric.from_proto(response_proto.metric)
コード例 #13
0
ファイル: test_run_data.py プロジェクト: 15021687693/lbg
 def _create():
     metrics = [
         Metric(random_str(10), random_int(),
                int(time.time() + random_int(-1e4, 1e4)))
         for x in range(100)
     ]  # noqa
     params = [
         Param(random_str(10), random_str(random_int(10, 35)))
         for x in range(10)
     ]  # noqa
     rd = RunData()
     for p in params:
         rd.add_param(p)
     for m in metrics:
         rd.add_metric(m)
     return rd, metrics, params
コード例 #14
0
 def _log_metrics(self):
     """
     Helper method to log metrics into specified run.
     """
     timestamp = int(time.time() * 1000)
     self.client.log_batch(
         self.run_id,
         metrics=[
             Metric(
                 key=_gen_log_key(key, self.dataset_name),
                 value=value,
                 timestamp=timestamp,
                 step=0,
             ) for key, value in self.metrics.items()
         ],
     )
コード例 #15
0
 def _add_metric(self, metric):
     if isinstance(metric, dict):
         metric = Metric(metric['key'], metric['value'],
                         metric['timestamp'])
     self._metrics.append(metric)