class NeuralNetworkClassifier(object): "Multi Layer Neural Network Classifier" def __init__(self, num_nodes_list): self.network = None self.num_nodes_list = num_nodes_list def train_all(self, data_table): num_inputs = len(data_table[0]) - 1 # minus one for the answer data_cols = np.rot90(data_table, -1) self.network = MultiLayerNetwork(num_inputs, self.num_nodes_list) normalized_data_cols = map(stats.zscore_map, data_cols) normalized_data = np.rot90(normalized_data_cols, 1) # run stuff through, and change the weights if it's wrong def predict(self, row): # could return multiple answers it thinks are right answers = self.network.activate(row) # Pick the "rightest" one return np.argmax(answers) def predict_all(self, data_table): return map(predict, data_table)
def train_all(self, data_table): num_inputs = len(data_table[0]) - 1 # minus one for the answer data_cols = np.rot90(data_table, -1) self.network = MultiLayerNetwork(num_inputs, self.num_nodes_list) normalized_data_cols = map(stats.zscore_map, data_cols) normalized_data = np.rot90(normalized_data_cols, 1)