print '#####################' print 'Current condition: ' print '- hidden architecture', condition[0] print '- regularization rate', condition[1] print '- batch size', condition[2] print '- Epoch number', condition[3] # 10-fold result_array = numpy.zeros((10, 3)) for i in xrange(10): print (('Experiment %d/10 is on-going') % (i+1)) datasets = load10FeatureData(input_data, target_data, idx, i) # test_result = [training_accuracy, testing_accuracy, f-score] test_result = test_mlp(architecture = condition[0], reg_rate = condition[1], batch_size = condition[2], epoch_num = condition[3], datasets = datasets) result_array[i,:] = numpy.array(test_result) result_mean = numpy.mean(result_array, axis=0) result_std = numpy.std(result_array, axis=0) result = numpy.concatenate((result_mean, result_std), axis=1) cond_result_list.append(result) print 'Result: ' print (('Mean training accuracy %f %%, testing accuracy %f %%, f-score %f') % (result_mean[0], result_mean[1], result_mean[2])) end_time = time.clock() print (('It takes for %.2fm') % ((end_time - start_time)/60.)) # Output cond_result
# Ubuntu input_data = numpy.loadtxt(open('/home/heehwan/Documents/workspace/data/DBN_data/X_1405_10features.csv', 'rb'), delimiter=',') target_data = numpy.loadtxt(open('/home/heehwan/Documents/workspace/data/DBN_data/Y_1405_10features.csv', 'rb'), delimiter=',') # Make dataset index idx = range(750) random.seed(1) random.shuffle(idx) print '... starting experiments' start_time = time.clock() # 10-fold result_array = numpy.zeros((10, 4)) for i in xrange(10): print (('Experiment %d/10 is on-going') % (i+1)) datasets = load10FeatureData(input_data, target_data, idx, i) # test_result = [training_accuracy, f-score, testing_accuracy, f-score] test_result = test_mlp(architecture = arch, reg_rate = reg, batch_size = batch_size, epoch_num = epoch, datasets = datasets) result_array[i,:] = numpy.array(test_result) end_time = time.clock() print (('It takes for %.2fm') % ((end_time - start_time)/60.)) # Result pickle.dump(result_array, open('result_400_3_v1.pkl', 'wb')) print result_array
'/home/heehwan/Documents/workspace/data/DBN_data/Y_1405_10features.csv', 'rb'), delimiter=',') # Make dataset index idx = range(750) random.seed(1) random.shuffle(idx) print '... starting experiments' start_time = time.clock() # 10-fold result_array = numpy.zeros((10, 4)) for i in xrange(10): print(('Experiment %d/10 is on-going') % (i + 1)) datasets = load10FeatureData(input_data, target_data, idx, i) # test_result = [training_accuracy, f-score, testing_accuracy, f-score] test_result = test_mlp(architecture=arch, reg_rate=reg, batch_size=batch_size, epoch_num=epoch, datasets=datasets) result_array[i, :] = numpy.array(test_result) end_time = time.clock() print(('It takes for %.2fm') % ((end_time - start_time) / 60.)) # Result pickle.dump(result_array, open('result_400_3_v1.pkl', 'wb')) print result_array