def test_model_extra_trees_classifier_multilabel(self): model, X_test = fit_multilabel_classification_model( ExtraTreesClassifier(random_state=42, n_estimators=10)) options = {id(model): {'zipmap': False}} model_onnx = convert_sklearn( model, "scikit-learn ExtraTreesClassifier", [("input", FloatTensorType([None, X_test.shape[1]]))], options=options, target_opset=get_opset_number_from_onnx()) self.assertTrue(model_onnx is not None) self.assertNotIn('zipmap', str(model_onnx).lower()) dump_data_and_model( X_test, model, model_onnx, basename="SklearnExtraTreesClassifierMultiLabel-Out0", folder=self.folder)
def test_model_random_forest_classifier_multilabel_low_samples(self): model, X_test = fit_multilabel_classification_model( RandomForestClassifier(random_state=42, n_estimators=10), n_samples=4) options = {id(model): {'zipmap': False}} model_onnx = convert_sklearn( model, "scikit-learn RandomForestClassifier", [("input", FloatTensorType([None, X_test.shape[1]]))], options=options, target_opset=TARGET_OPSET) self.assertTrue(model_onnx is not None) self.assertNotIn('zipmap', str(model_onnx).lower()) dump_data_and_model( X_test, model, model_onnx, basename="SklearnRandomForestClassifierMultiLabelLowSamples-Out0", folder=self.folder)
def test_random_forest_classifier_fit_simple_multi(self): res = fit_multilabel_classification_model(ExtraTreesClassifier()) self.assertEqual(len(res), 2)