コード例 #1
0
ファイル: maps.py プロジェクト: zandalman/YHack-2019
def find_route(n, matrix, time_limit):
    good = []
    for i in range(1, 2**(n - 1)):
        bin = binary(i, n - 1) + "1"
        iArr = []
        posArr = []
        for j in range(n - 1):
            if (bin[j] == '1'):
                iArr.append(j)
                posArr.append(locations[j])

        if (len(iArr) > 1):
            new_mat = getMat(iArr, matrix)
            dist_list = []
            for j in range(len(iArr)):
                for k in range(j + 1, len(iArr)):
                    dist_list.append((j, k, new_mat[j][k]))

            fitness_dists = mlrose.TravellingSales(distances=dist_list)
            problem_fit = mlrose.TSPOpt(length=len(iArr),
                                        fitness_fn=fitness_dists,
                                        maximize=False)
            best_state, best_fitness = mlrose.genetic_alg(problem_fit,
                                                          random_state=2)

            best_state_fr = []
            for k in range(len(iArr)):
                best_state_fr.append(iArr[best_state[k]])

            if (best_fitness < time_limit):
                good.append(best_state_fr)

    return good
コード例 #2
0
def rank(fnames, save=True):

    dist_mat = np.load(fnames['dmat'])
    dist_list = mat2tuples(dist_mat)

    # define fitness function object
    fitness_dists = mlrose.TravellingSales(distances=dist_list)

    # define optimization problem object
    n = dist_mat.shape[0]
    problem_fit = mlrose.TSPOpt(length=n,
                                fitness_fn=fitness_dists,
                                maximize=False)

    # solve problem using the genetic algorithm
    best_state, best_fitness = mlrose.genetic_alg(problem_fit,
                                                  mutation_prob=0.2,
                                                  max_attempts=100,
                                                  random_state=2)

    # retrieve ranked list
    cand = load(fnames['cand'])
    ranked_cand = cand.loc[best_state]

    # save the output
    fname_ranked = None
    if save:
        fname, ext = os.path.splitext(fnames['cand'])
        fname_ranked = fname + '_ranked' + ext
        write(fname_ranked, ranked_cand)
        print('Ordered candidates saved to {}'.format(fname_ranked))

    return fname_ranked
コード例 #3
0
def main():
    name_of_exp = "One Max"
    # Create list of city coordinates
    coords_list = [(1, 1), (4, 2), (5, 2), (6, 4), (4, 4), (3, 6), (1, 5), (2, 3)]
    mimic = []
    # Initialize fitness function object using coords_list
    fitness_coords = mlrose.TravellingSales(coords=coords_list)
    problem = mlrose.TSPOpt(length=8, fitness_fn=fitness_coords,
                            maximize=False)
    z_s = ['RHC', 'SA', 'GA', 'MIMIC']
    for i in [0.1,0.2,0.3,0.4,0.5]:
        best_state, best_fitness, learning_curve, timing_curve = mlrose.genetic_alg(problem, pop_size=100,
                                                                              mutation_prob=i,
                                                                              max_attempts=100,
                                                                              max_iters=100, curve=True,
                                                                              random_state=1)
        mimic.append(learning_curve)
        print(i)
        print(best_fitness)
    for x, z in zip([0.1,0.2,0.3,0.4,0.5], mimic):
        plt.plot(z, label=str(x))
    plt.legend()
    plt.title('GA Randomized Optimization MutationProb vs Fitness Curve (TSP)')
    plt.xlabel('Function iteration count')
    plt.ylabel('Fitness function value')
    plt.show()
コード例 #4
0
def gera_grafo(df) -> Grafo:
    global grafo

    grafo = Grafo(df)

    for i in range(len(colunas)):
        # Pega o nome da cidade pelo índice
        cidade_origem = colunas[i]
        for j in range(len(colunas)):
            # Pega o peso e o destino da aresta e adiciona no objeto Grafo
            destino = df.index[j]
            peso = df.iloc[j][cidade_origem]
            #aresta = dict(rota=(cidade_origem, destino), peso=peso)
            if peso != '-':
                aresta = (int(cidade_origem), int(destino), int(peso))
                grafo.adiciona_arestas(aresta)

    fitness = mlrose.TravellingSales(distances=grafo.arestas)
    # Define optimization problem object
    problem_fit = mlrose.TSPOpt(length=8, fitness_fn=fitness, maximize=False)
    best_state, best_fitness = mlrose.genetic_alg(problem_fit,
                                                  mutation_prob=0.2,
                                                  max_attempts=100,
                                                  random_state=2)
    print(fitness)
    return grafo
コード例 #5
0
    def tsp_factory(length=10, min_nodeval=1, max_nodeval=20):

        coords = []
        for i in range(length):

            node = (
                np.random.randint(min_nodeval, max_nodeval),
                np.random.randint(min_nodeval, max_nodeval),
            )
            while node in coords:
                node = (
                    np.random.randint(min_nodeval, max_nodeval),
                    np.random.randint(min_nodeval, max_nodeval),
                )

            coords.append(node)

        fitness = count_evaluations(mlrose.TravellingSales, coords)
        fitness_final = mlrose.CustomFitness(fitness)
        fitness_final.get_prob_type = (
            lambda: "tsp"
        )  # Just a hack to make it work with a custom function.

        problem = mlrose.TSPOpt(length=length,
                                fitness_fn=fitness_final,
                                maximize=False)
        dists = generate_distances(coords)
        optimum, _ = held_karp(dists)

        return problem, optimum
コード例 #6
0
def encuentra_circuito(ls_basicas):

    n_bas = [i for i in range(len(ls_basicas))]
    comb = itertools.combinations(n_bas, 2)

    dist_list = []
    for i in comb:
        costo = aptitud2(ls_basicas[i[0]], ls_basicas[i[1]])
        dist_list.append((i[0], i[1], costo))
        #print(ls_basicas[i[0]], ls_basicas[i[1]], costo)

    # Initialize fitness function object using dist_list
    fitness_dists = mlrose.TravellingSales(distances=dist_list)
    problem_fit = mlrose.TSPOpt(length=len(ls_basicas),
                                fitness_fn=fitness_dists,
                                maximize=True)
    best_state, best_fitness = mlrose.genetic_alg(problem_fit, random_state=2)
    #print(best_state)
    #print(best_fitness)

    # =============================================================================
    #     for i in best_state:
    #         print(ls_basicas[i])
    # =============================================================================
    return list(best_state), best_fitness / 2
コード例 #7
0
ファイル: calculate_routes.py プロジェクト: lironabr/SuperPy
def calculate_route(super_matrix, shopping_list):
    shopping_list.append("0")  # go through enterance
    bfs, routes = calc_distance_between_all_list(super_matrix, shopping_list)
    bfs = sorted(bfs)
    (new_input, input_converter_dict) = input_converter(bfs)

    # Initialize fitness function object using dist_list
    fitness_dists = mlrose.TravellingSales(distances=new_input)
    # Define optimization problem object
    problem_fit = mlrose.TSPOpt(length=len(shopping_list),
                                fitness_fn=fitness_dists,
                                maximize=False)
    # Solve problem using the genetic algorithm
    # best_state, best_fitness = mlrose.genetic_alg(problem_fit, random_state = 2)
    best_state, best_fitness = mlrose.genetic_alg(problem_fit,
                                                  mutation_prob=0.2,
                                                  max_attempts=200,
                                                  pop_size=200,
                                                  random_state=0)

    output_converter_dict = dict(
        (v, k) for k, v in input_converter_dict.items())
    final_result = [output_converter_dict[x] for x in best_state]
    register_index = final_result.index("0")
    final_result = final_result[register_index:] + final_result[:register_index]
    final_route = []

    for (k, v) in zip(final_result, final_result[1:] + final_result[:1]):
        for (x, y, z) in routes:
            if k == x and v == y:
                final_route += z
            elif k == y and v == x:
                final_route += z[::-1]

    return final_route, items_coor(super_matrix, shopping_list)
コード例 #8
0
ファイル: Backend2 (1).py プロジェクト: jasmine071998/RACO
def tsp(dd,l):
    state=[]
    for i in range(0,len(dd)):
      fitness_dists = mlrose.TravellingSales(distances = dd[i])
      problem_fit = mlrose.TSPOpt(length = len(l[i]), fitness_fn = fitness_dists, maximize=False)
      best_state, best_fitness = mlrose.genetic_alg(problem_fit, random_state = 2)
      state.append(best_state.tolist())
    return(state)
コード例 #9
0
def api_tsp():
    # Check if an ID was provided as part of the URL.
    # If ID is provided, assign it to a variable.
    # If no ID is provided, display an error in the browser.
    places_to_visit = []
    if 'places' in request.args:
        temp = request.args['places']
        splitItems = temp.split(",")
        # listTemp = [int(i) for i in splitItems]
        print(request.args['places'])
        places_to_visit = splitItems
        # id = int(request.args['id'])
    else:
        return "Error: No id field provided. Please specify an id."

    # Create an empty list for our results
    results = []

    distance_matrix=[]
    for i in range(len(places_to_visit)):
        for j in range(i+1,len(places_to_visit)):
            origin=places_to_visit[i]
            dest=places_to_visit[j]
            key=(origin,dest)

            req='https://maps.googleapis.com/maps/api/distancematrix/json?origins=place_id:'+origin+'&destinations=place_id:'+dest+'&key='+my_API_key
            Response = requests.get(req)
            Response=Response.json()

            #pprint.pprint(Response["rows"][0]["elements"][0]["duration"]["value"])
            value=Response["rows"][0]["elements"][0]["duration"]["value"] #We get the time duration is seconds
            new_element=(i,j,value)
            distance_matrix.append(new_element)
    fitness = mlrose.TravellingSales(distances = distance_matrix)
    # We want to visit all the places of our list "places_to_visit"
    problem = mlrose.TSPOpt(length = len(places_to_visit), fitness_fn = fitness,
                                maximize=False)

    best_state, best_fitness = mlrose.genetic_alg(problem, random_state = 0)
    ordered_places_to_visit=[]
    for i in best_state:
      ordered_places_to_visit.append(places_to_visit[i])
    print(places_to_visit)

    temp = {}
    temp['results'] = ordered_places_to_visit
    results.append(temp)
    # Loop through the data and match results that fit the requested ID.
    # IDs are unique, but other fields might return many results
    # for book in books:
    #     if book['id'] in listTemp:
    #         results.append(book)

    # Use the jsonify function from Flask to convert our list of
    # Python dictionaries to the JSON format.
    return jsonify(results)
コード例 #10
0
    def genetic(self):
        problem_no_fit = mlrose.TSPOpt(length=len(self.coord),
                                       coords=self.coord,
                                       maximize=False)
        best_state, best_fitness = mlrose.genetic_alg(problem_no_fit,
                                                      mutation_prob=0.2,
                                                      max_attempts=100,
                                                      random_state=2)

        return best_state
コード例 #11
0
def metaheuristic(dist, meta=None, nnodes=None, **kwargs):
    # fit data
    fit_dist = mr.TravellingSales(distances=dist)

    # define TSP
    fit_problem = mr.TSPOpt(length=nnodes, fitness_fn=fit_dist, maximize=False)

    # define optmization metaheuristic
    # kwargs are parameters to the metaheuristic
    best_state, best_fit = meta(fit_problem, **kwargs)

    return (best_state, best_fit)
コード例 #12
0
    def _cal_route(self):
        """ based on TSP solver """

        dist_list = self._build_dist_list()
        fitness_dists = mlrose.TravellingSales(distances=dist_list)
        problem_fit = mlrose.TSPOpt(length=len(self._places),
                                    fitness_fn=fitness_dists,
                                    maximize=False)
        best_state, best_fitness = mlrose.genetic_alg(problem_fit,
                                                      random_state=2)

        return best_state
コード例 #13
0
def calc_shortest_route_mlrose(
        systems: Iterable[Dict]) -> Tuple[List[Dict], float]:
    # See https://mlrose.readthedocs.io/en/stable/source/tutorial2.html#
    fitness_distances = mlrose.TravellingSales(
        distances=calc_distances(systems))
    problem_fit = mlrose.TSPOpt(length=len(systems),
                                fitness_fn=fitness_distances,
                                maximize=False)
    best_state, best_fitness = mlrose.genetic_alg(problem_fit,
                                                  random_state=20,
                                                  max_attempts=20)
    return ([systems[index] for index in best_state], best_fitness)
コード例 #14
0
 def _do_tsp(self, dist_list):
     """Do the actual travelling salesperson."""
     dist_list.sort(key=lambda x: x[0])
     length = int(self._get_max_index_value_in_dists(dist_list) + 1)
     try:
         fitness_dists = mlrose.TravellingSales(distances=dist_list)
         problem_fit = mlrose.TSPOpt(
             length=length, fitness_fn=fitness_dists, maximize=False)
         best_state, best_fitness = mlrose.genetic_alg(
             problem_fit, mutation_prob=0.2, max_attempts=50)
     except Exception:
         print(f"tsp failed. dist_list: {dist_list}")
         raise
     return best_state
コード例 #15
0
def findSolution():
    fitness_coords = mlrose.TravellingSales(coords=coords_list)
    problem_fit = mlrose.TSPOpt(length=48,
                                fitness_fn=fitness_coords,
                                maximize=False)
    best_state, best_fitness = mlrose.genetic_alg(problem_fit,
                                                  mutation_prob=0.2,
                                                  max_attempts=100,
                                                  random_state=2)
    json_response = json.dumps({
        "bestState": best_state.tolist(),
        "bestFitness": best_fitness.tolist()
    })
    print(json_response)
    return json_response
コード例 #16
0
ファイル: app.py プロジェクト: gecid-aia/unroute-me
def shortest_path(coords, start, end):
    tsp_fitness = mlrose.TravellingSales(coords=coords)

    def filter_endpoints(state):
        if state[0] == start and state[-1] == end:
            return tsp_fitness.evaluate(state)
        else:
            return math.inf

    fitness = mlrose.CustomFitness(filter_endpoints, 'tsp')
    problem = mlrose.TSPOpt(length=len(coords),
                            fitness_fn=fitness,
                            maximize=False)
    path, length = mlrose.genetic_alg(problem, random_state=2)
    return [coords[i] for i in path]
コード例 #17
0
    def __init__(self, my_map):

        self.my_map = my_map
        self.my_map_np = np.asarray(self.my_map)

        # analysis the map
        self.bound_cells = mark_boundaries(self.my_map_np)
        print('Find Minimal Set Cover')

        start = datetime.datetime.now()

        self.key_points, self.key_pt_dirs, self.key_pt_cover_bd_idx = find_min_set_cover(
            self.bound_cells)
        self.state_dist, self.state_space = gen_solution_space(
            self.bound_cells, self.key_points, self.key_pt_dirs, 0.1, 50)

        print("Time for Minimal Set Cover is ",
              datetime.datetime.now() - start)

        # run the TSP to initialize
        print('Run TSP on finding vertices cover')

        start = datetime.datetime.now()

        fitness_function = mlrose.TravellingSales(distances=self.state_dist)
        problem_fit = mlrose.TSPOpt(length=len(self.state_space),
                                    fitness_fn=fitness_function,
                                    maximize=False)

        # Solve the problem using the genetic algorithm
        best_state, best_fitness = mlrose.genetic_alg(problem_fit,
                                                      random_state=5)
        self.best_state = best_state

        # extract states
        idx_2_state_spaces = {}
        for key, value in self.state_space.items():
            idx_2_state_spaces[value] = key
        state_dict = [
            idx_2_state_spaces[i].split("-") for i in self.best_state
        ]
        self.state_dict = [(self.key_points[int(s[0])], s[1])
                           for s in state_dict]

        if np.isinf(best_fitness):
            print('Error when finding TSP')

        print("Time for TSP is ", datetime.datetime.now() - start)
コード例 #18
0
ファイル: demo.py プロジェクト: dfd/CS7641_hw02
def tsp_problem():
    coords_list = [(1, 1), (4, 2), (5, 2), (6, 4), (4, 4), (3, 6), (1, 5),
                   (2, 3)]
    fitness_coords = mlrose.TravellingSales(coords=coords_list)

    # Define optimization problem object
    problem_fit = mlrose.TSPOpt(length=8,
                                fitness_fn=fitness_coords,
                                maximize=True)

    best_state, best_fitness = mlrose.genetic_alg(problem_fit, random_state=2)

    print(best_state)
    print(best_fitness)

    best_state, best_fitness = mlrose.genetic_alg(problem_fit,
                                                  mutation_prob=0.2,
                                                  max_attempts=100,
                                                  random_state=2)
コード例 #19
0
def find_best_path(points_data, random_state=0, use_coords=True):
    '''Find the shortest closed path (in euclidean distance)
    using Elastic Net Algorithm in mlrose package.'''
    # tuning curve size: (numNeruo, numBin) (might be high dimensional: numNeuro>3)
    # numBin = num_pts
    points_data = np.array(points_data)
    if len(points_data.shape) == 1:
        points_data = points_data.reshape((1, points_data.size))
    num_pts = points_data.shape[1]  # number of points

    def euclidean_distance(x, y):
        return np.sqrt(np.sum((x - y)**2))

    if use_coords:
        coords_list = []
        for i in range(num_pts):
            coords_list += [tuple(points_data[:, i])]
        # Initialize fitness function object using coords_list
        fitness = mlrose.TravellingSales(coords=coords_list)
    else:
        # use euclidean distances computed

        dist_list = []
        for i in range(num_pts):
            for j in range(num_pts):
                if i != j:
                    dist_list.append(
                        (i, j,
                         euclidean_distance(points_data[:, i],
                                            points_data[:, j])))
        # Initialize fitness function object using dist_list
        fitness = mlrose.TravellingSales(distances=dist_list)

    problem_fit = mlrose.TSPOpt(length=num_pts,
                                fitness_fn=fitness,
                                maximize=False)

    # Solve problem using the genetic algorithm
    best_path, best_path_len = mlrose.genetic_alg(problem_fit,
                                                  random_state=random_state)

    return best_path, best_path_len  # length of closed curve
コード例 #20
0
    def _price_routing(self) -> list:
        """Returns the best path to traverse geopoints based on
        the cost between each of these pairs.
        """
        triplets = self._get_price_triplets()
        # Sales travelling instance
        fitness_prices = mlrose.TravellingSales(distances=triplets)
        # Fit problem
        problem_fit = mlrose.TSPOpt(length=len(self.orders),
                                    fitness_fn=fitness_prices,
                                    maximize=False)

        best_state, _ = mlrose.genetic_alg(problem_fit,
                                           pop_size=200,
                                           mutation_prob=0.2,
                                           max_attempts=100,
                                           max_iters=10,
                                           random_state=2)

        return best_state
コード例 #21
0
    def get_genetic_path(self):
        """
        Return an approximate solution length to the TSP problem
        """

        fitness_coords = mlrose.TravellingSales(coords=self.coords)

        dist_list = list(self.G.edges.data('weight'))
        fitness_dists = mlrose.TravellingSales(distances=dist_list)

        problem_fit = mlrose.TSPOpt(length=self.nodes,
                                    fitness_fn=fitness_coords,
                                    maximize=False)

        best_state, best_fitness = mlrose.genetic_alg(problem_fit,
                                                      random_state=2,
                                                      mutation_prob=0.2,
                                                      max_attempts=100)

        return best_fitness
コード例 #22
0
    def _map_routing(self) -> list:
        """Returns the best path to traverse points given by geo-coordinates.
        """
        # Lat and Lon of each order
        geo_points = self._get_map_coordinates()
        # Sales travelling instance
        fitness_coordinates = mlrose.TravellingSales(coords=geo_points)
        # Fit problem
        problem_fit = mlrose.TSPOpt(length=len(self.orders),
                                    fitness_fn=fitness_coordinates,
                                    maximize=False)
        # Best state result
        best_state, _ = mlrose.genetic_alg(problem_fit,
                                           pop_size=200,
                                           mutation_prob=0.2,
                                           max_attempts=100,
                                           max_iters=10,
                                           random_state=2)

        return best_state
コード例 #23
0
ファイル: generators.py プロジェクト: brandonpotocki/mlrose
    def generate(seed, number_of_cities, area_width=250, area_height=250):
        np.random.seed(seed)
        x_coords = np.random.randint(area_width, size=number_of_cities)
        y_coords = np.random.randint(area_height, size=number_of_cities)

        coords = list(tuple(zip(x_coords, y_coords)))
        duplicates = TSPGenerator.list_duplicates_(coords)

        while len(duplicates) > 0:
            for d in duplicates:
                x_coords = np.random.randint(area_width, size=len(d))
                y_coords = np.random.randint(area_height, size=len(d))
                for i in range(len(d)):
                    coords[d[i]] = (x_coords[i], y_coords[i])
                    pass
            duplicates = TSPGenerator.list_duplicates_(coords)
        distances = TSPGenerator.get_distances(coords, False)

        return mlrose.TSPOpt(coords=coords,
                             distances=distances,
                             maximize=False)
コード例 #24
0
def tsp_zone_distance(transformed_df, main_df):
    zones = ["D1", "D2", "D3", "D4", "D5", "D6"]
    unpivoted_df = pd.melt(transformed_df,
                           id_vars=['Id_Cliente'],
                           var_name="zones")
    unpivoted_df = unpivoted_df[unpivoted_df.value > 0]
    joined_df = unpivoted_df.merge(main_df[["Id_Cliente", "lat", "lon"]],
                                   on="Id_Cliente",
                                   how="left")
    total_distance = []
    for zone in zones:
        fitness_coords = mlrose.TravellingSales(coords=joined_df[
            joined_df["zones"] == zone][["lat", "lon"]].to_numpy())
        problem_fit = mlrose.TSPOpt(
            length=joined_df[joined_df["zones"] == zone].shape[0],
            fitness_fn=fitness_coords,
            maximize=False)
        best_state, best_fitness = mlrose.genetic_alg(problem_fit,
                                                      random_state=12)
        total_distance.append(best_fitness)
    print(total_distance)
    return (sum(total_distance))
コード例 #25
0
ファイル: solver.py プロジェクト: pujol99/PathFinder
    def solve_method(self, graph, current_node):
        nodes = list(graph.nodes) + [self.start]
        nodes.sort(key=lambda x: x.index)

        dist_list = [(node1.index, node2.index, node1.compute_distance(node2))
                     for node1 in nodes for node2 in nodes
                     if node1.index < node2.index]

        fitness_coords = mlrose.TravellingSales(
            coords=[node.get() for node in nodes], distances=dist_list)

        problem_fit = mlrose.TSPOpt(length=len(nodes),
                                    fitness_fn=fitness_coords,
                                    maximize=False)
        self.path, self.cost = mlrose.genetic_alg(problem_fit,
                                                  mutation_prob=0.2,
                                                  max_attempts=100,
                                                  random_state=2)

        self.path = [graph.get(node) for node in self.path]
        display_path(self.ax, self.path)

        return time.process_time() - self.time
コード例 #26
0
def distance_optim(x_coordinates, y_coordinates):
    # Create the distance list for cell pairs
    # Unfortunately, cell indices starts from zero for mlrose
    #dist_list = [(0, 1, distance(x_coordinates,y_coordinates,0,1)), (0, 2, distance(x_coordinates,y_coordinates,0,2)),\
    #             (1, 3, distance(x_coordinates,y_coordinates,1,3)), (2, 3, distance(x_coordinates,y_coordinates,2,3)),\
    #             (3, 4, distance(x_coordinates,y_coordinates,3,4)), (3, 5, distance(x_coordinates,y_coordinates,3,5)),\
    #             (4, 6, distance(x_coordinates,y_coordinates,4,6)), (5, 6, distance(x_coordinates,y_coordinates,5,6)),\
    #             (6, 7, distance(x_coordinates,y_coordinates,6,7)), (6, 8, distance(x_coordinates,y_coordinates,6,8)),\
    #             (7, 9, distance(x_coordinates,y_coordinates,7,9)), (8, 9, distance(x_coordinates,y_coordinates,8,9)),\
    #             (9, 10, distance(x_coordinates,y_coordinates,9,10)), (9, 11, distance(x_coordinates,y_coordinates,9,11)),\
    #             (10, 12, distance(x_coordinates,y_coordinates,10,12)), (11, 12, distance(x_coordinates,y_coordinates,11,12))]

    dist_list3 = [(0, 1, distance(x_coordinates,y_coordinates,0,1)), (0, 2, distance(x_coordinates,y_coordinates,0,2)),\
                 (1, 3, distance(x_coordinates,y_coordinates,1,3)), (2, 3, distance(x_coordinates,y_coordinates,2,3)),\
                 (3, 4, distance(x_coordinates,y_coordinates,3,4)), (3, 5, distance(x_coordinates,y_coordinates,3,5))]

    # Define a fitness function object
    fitness_dists = mlrose.TravellingSales(distances=dist_list3)
    # Define a optimization problem object
    problem_fit = mlrose.TSPOpt(length=len(y_coordinates),
                                fitness_fn=fitness_dists,
                                maximize=False)
    return problem_fit
コード例 #27
0
ファイル: tsp_auto.py プロジェクト: salmonellix/ga_tsp
import mlrose
import numpy as np

# Create list of city coordinates
coords_list = [(0, 1), (3, 4), (6, 5), (7, 3), (15, 0), (12, 4), (14, 10),
               (9, 6), (7, 9), (0, 10)]

# Initialize fitness function object using coords_list
fitness_coords = mlrose.TravellingSales(coords=coords_list)

problem_fit = mlrose.TSPOpt(length=10,
                            fitness_fn=fitness_coords,
                            maximize=False)

best_state, best_fitness = mlrose.genetic_alg(problem_fit, random_state=2)

print('The best state found is: ', best_state)

print('The fitness at the best state is: ', best_fitness)
コード例 #28
0
fitness_coords = mlrose.TravellingSales(coords = coords_list)

# Create list of distances between pairs of cities
dist_list = [(0, 1, 3.1623), (0, 2, 4.1231), (0, 3, 5.8310), (0, 4, 4.2426), \
             (0, 5, 5.3852), (0, 6, 4.0000), (0, 7, 2.2361), (1, 2, 1.0000), \
             (1, 3, 2.8284), (1, 4, 2.0000), (1, 5, 4.1231), (1, 6, 4.2426), \
             (1, 7, 2.2361), (2, 3, 2.2361), (2, 4, 2.2361), (2, 5, 4.4721), \
             (2, 6, 5.0000), (2, 7, 3.1623), (3, 4, 2.0000), (3, 5, 3.6056), \
             (3, 6, 5.0990), (3, 7, 4.1231), (4, 5, 2.2361), (4, 6, 3.1623), \
             (4, 7, 2.2361), (5, 6, 2.2361), (5, 7, 3.1623), (6, 7, 2.2361)]

# Initialize fitness function object using dist_list
fitness_dists = mlrose.TravellingSales(distances = dist_list)

# Define optimization problem object
problem_fit = mlrose.TSPOpt(length = 8, fitness_fn = fitness_coords, maximize=False)

# Create list of city coordinates
coords_list = [(1, 1), (4, 2), (5, 2), (6, 4), (4, 4), (3, 6), (1, 5), (2, 3)]

# Define optimization problem object
problem_no_fit = mlrose.TSPOpt(length = 8, coords = coords_list, maximize=False)

# Solve problem using the genetic algorithm
#best_state, best_fitness = mlrose.genetic_alg(problem_fit, random_state = 2)

# This solution can potentially be improved on by tuning the parameters of the optimization algorithm. 
# For example, increasing the maximum number of attempts per step to 100 and increasing the mutation probability 
# to 0.2, yields a tour with a total length of 17.343 units.

# Solve problem using the genetic algorithm - Improved!
コード例 #29
0
def get_object_places(table_path, graph_path, visited_places):
    assert os.path.exists(table_path)
    assert os.path.exists(graph_path)

    df = pd.read_csv(table_path, index_col=0)

    while True:
        #speech to text part
        # obtain audio from the microphone
        r = sr.Recognizer()
        with sr.Microphone() as source:

            print("Quale oggetto stai cercando?\n")
            #audio = r.listen(source)

            # recognize speech using Google Cloud Speech
            try:
                object_to_search = "wallet"
                #object_to_search = r.recognize_google_cloud(audio, credentials_json=GOOGLE_CLOUD_SPEECH_CREDENTIALS).strip()

                #similar = check_similapr_objects(df, object_to_search)
                #print(similar)
                if (len(df.loc[df["object"] == object_to_search]) > 0):
                    break
                elif (similar != None):
                    answer = input(
                        object_to_search +
                        " non trovato, trovata compatibilita' con " + similar +
                        ", utilizzare la sua distribuzione?[Y/n]\n")
                    if (answer == "Y"):
                        object_to_search = similar
                        break

            except sr.UnknownValueError:
                print("Google Cloud Speech could not understand audio")
            except sr.RequestError as e:
                print(
                    "Could not request results from Google Cloud Speech service; {0}"
                    .format(e))

    df = df.loc[df["object"] == object_to_search].drop('object', 1)
    places = list(df.keys())

    #dropping places already visited

    for visited_place in visited_places:
        df = df.drop(visited_place, 1)
        places.remove(visited_place)

    row = df
    print(row)

    for x in list(zip(row.keys(), row.values[0])):
        print(str(x[0]) + " " + str(x[1]))

    knowledge = row.values[0]

    number_of_places = len(knowledge)

    distances_dict = get_distances(graph_path,
                                   ("pose", 1.7219, 11.1261, "storage"))
    distances = [distances_dict[key] for key in places]
    max_distance = max(distances)

    inverted_distances = list(
        map(lambda x: abs(x - max_distance + 1) / 5, distances))

    prior_knowledge = np.array(inverted_distances)

    with pm.Model() as model:
        # Parameters of the Multinomial are from a Dirichlet
        parameters = pm.Dirichlet('parameters',
                                  a=prior_knowledge,
                                  shape=number_of_places)
        # Observed data is from a Multinomial distribution
        observed_data = pm.Multinomial('observed_data',
                                       n=sum(knowledge),
                                       p=parameters,
                                       shape=number_of_places,
                                       observed=knowledge)

    with model:
        # Sample from the posterior
        trace = pm.sample(draws=1000,
                          chains=2,
                          tune=500,
                          discard_tuned_samples=True)

        trace_df = pd.DataFrame(trace['parameters'], columns=places)

    # For probabilities use samples after burn in
    pvals = trace_df.iloc[:, :number_of_places].mean(axis=0)
    tag_and_dist = sorted(zip(places, pvals), key=lambda x: x[1], reverse=True)
    display_probs(dict(tag_and_dist))

    top_4_places = [x[0] for x in tag_and_dist[:4]]

    g = build_graph(graph_path)

    topn_nodes = []

    for label in top_4_places:
        for node in g.nodes():
            _, _, _, node_label = node
            if (node_label == label):
                topn_nodes += [node]
                break

    #adding the actual position to the top4 nodes
    topn_nodes += [("pose", 7.3533, 0.5381, "corridor-1")]
    subgraph = nx.Graph()

    edges = list(itertools.combinations(g.subgraph(topn_nodes), 2))

    all_distances = dict(nx.all_pairs_shortest_path_length(g))

    edges_with_weight = [(topn_nodes.index(x[0]), topn_nodes.index(x[1]),
                          all_distances[x[0]][x[1]]) for x in edges]

    print(edges_with_weight)

    fitness_dists = mlrose.TravellingSales(distances=edges_with_weight)
    problem_fit = mlrose.TSPOpt(length=len(topn_nodes),
                                fitness_fn=fitness_dists,
                                maximize=False)
    best_state, best_fitness = mlrose.genetic_alg(problem_fit, random_state=2)

    path = [topn_nodes[x][3] for x in best_state]

    path = rotate(path, path.index('corridor-1'))

    print(path)
コード例 #30
0
'''
SAME PROBLEM USING MLROSE LIBRARY
'''

import mlrose
# create a list of triplets (u,v,d) giving distance d between nodes u and v.
'''
assume
city-0,city-1,city-2,,city-3,city-4,city-5,city-6,city-7,city-8,city-9  
'''
dist_list = [(0, 1, 3.1623), (0, 2, 4.1231), (0, 3, 5.8310), (0, 4, 4.2426),
             (0, 5, 5.3852), (0, 6, 4.0000), (0, 7, 2.2361), (1, 2, 1.0000),
             (2, 6, 5.0000), (2, 7, 3.1623), (3, 4, 2.0000), (3, 5, 3.6056),
             (3, 6, 5.0990), (3, 7, 4.1231), (4, 5, 2.2361), (4, 6, 3.1623),
             (4, 7, 2.2361), (5, 6, 2.2361), (5, 7, 3.1623), (6, 7, 2.2361)]

coords_list = [(1, 1), (4, 2), (5, 2), (6, 4), (4, 4), (3, 6), (1, 5), (2, 3)]

fitness_func = mlrose.TravellingSales(distances=dist_list)
optimization_problem = mlrose.TSPOpt(length=8,
                                     fitness_fn=fitness_func,
                                     maximize=False,
                                     distances=dist_list)
init_state = np.array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])  # Define initial state
best_state, best_fitness = mlrose.genetic_alg(optimization_problem,
                                              pop_size=1000,
                                              mutation_prob=0.07,
                                              random_state=2)

print('The best state : ', best_state)
print('Fitness: ', best_fitness)