コード例 #1
0
ファイル: opt_ga_runner.py プロジェクト: shileiphys/CS7641
def main():

    SEED = 1

    OUTPUT_DIRECTORY = './output'

    input_size = 25
    # pop_size_list = list(range(input_size, input_size*6, input_size))
    pop_size_list = [50, 100, 150, 200]

    ## Four Peaks
    experiment_name = '4peaks'
    problem = generate_problem(experiment_name, seed=SEED, input_size=50)

    ga = GARunner(problem=problem,
                  experiment_name=experiment_name,
                  output_directory=OUTPUT_DIRECTORY,
                  seed=SEED,
                  iteration_list=2**np.arange(12),
                  max_attempts=50,
                  population_sizes=pop_size_list,
                  mutation_rates=[0.05, 0.1, 0.25, 0.5])

    df_run_stats, df_run_curves = ga.run()

    ## Flip Flop
    experiment_name = 'flipflop'
    problem = generate_problem(experiment_name, seed=SEED, input_size=25)

    ga = GARunner(problem=problem,
                  experiment_name=experiment_name,
                  output_directory=OUTPUT_DIRECTORY,
                  seed=SEED,
                  iteration_list=2**np.arange(12),
                  max_attempts=200,
                  population_sizes=pop_size_list,
                  mutation_rates=[0.05, 0.1, 0.25, 0.5])

    df_run_stats, df_run_curves = ga.run()

    ## Knapsack
    experiment_name = 'knapsack'
    problem = generate_problem(experiment_name, seed=SEED, input_size=150)

    ga = GARunner(problem=problem,
                  experiment_name=experiment_name,
                  output_directory=OUTPUT_DIRECTORY,
                  seed=SEED,
                  iteration_list=2**np.arange(12),
                  max_attempts=50,
                  population_sizes=pop_size_list,
                  mutation_rates=[0.05, 0.1, 0.25, 0.5])

    df_run_stats, df_run_curves = ga.run()
コード例 #2
0
 def run(self):
     runner = GARunner(problem=self.problem,
                       experiment_name=self.name,
                       seed=self.seed,
                       iteration_list=self.iterations,
                       population_sizes=self.population,
                       mutation_rates=self.mutation,
                       max_attempts=self.attempts,
                       generate_curves=True,
                       output_directory=self.output)
     runner.run()
コード例 #3
0
def main():
    experiment_name_ga = 'Max_K_GA'
    OUTPUT_DIRECTORY = './output'
    problem = MaxKColorGenerator.generate(seed=seed,
                                          number_of_nodes=40,
                                          max_connections_per_node=4)
    ga = GARunner(problem=problem,
                  experiment_name=experiment_name_ga,
                  output_directory=OUTPUT_DIRECTORY,
                  seed=seed,
                  iteration_list=2**np.arange(12),
                  max_attempts=200,
                  population_sizes=[150, 200, 250, 300],
                  mutation_rates=[0.03, 0.1, 0.2, 0.3, 0.4])
    ga.run()
    experiment_name_mimic = 'Max_K_MIMIC'
    mmc = MIMICRunner(problem=problem,
                      experiment_name=experiment_name_mimic,
                      output_directory=OUTPUT_DIRECTORY,
                      seed=seed,
                      iteration_list=2**np.arange(12),
                      max_attempts=200,
                      population_sizes=[150, 200, 250, 300],
                      keep_percent_list=[0.03, 0.1, 0.2, 0.3, 0.4])
    mmc.run()
    experiment_name_rhc = 'Max_K_RHC'
    rhc = RHCRunner(problem=problem,
                    experiment_name=experiment_name_rhc,
                    output_directory=OUTPUT_DIRECTORY,
                    seed=seed,
                    iteration_list=2**np.arange(12),
                    max_attempts=5000,
                    restart_list=[25, 75, 100])
    rhc.run()
    experiment_name_sa = 'Max_K_SA'
    sa = SARunner(
        problem=problem,
        experiment_name=experiment_name_sa,
        output_directory=OUTPUT_DIRECTORY,
        seed=seed,
        iteration_list=2**np.arange(14),
        max_attempts=200,
        temperature_list=[1, 10, 50, 100, 250, 500, 1000, 2500, 5000, 10000])

    sa.run()
コード例 #4
0
                  temperature_list=temperature_list,
                  decay_list=[ExpDecay])
    sa_run_stats, sa_run_curves = sa.run()

if algorithm_name == "GA" and False:
    population_sizes = [100]
    mutation_rates = [0.05, 0.2, 0.3, 0.4]
    ga = GARunner(problem=problem,
                  experiment_name=experiment_name,
                  output_directory=constants.OUTPUT_DIRECTORY,
                  seed=0,
                  iteration_list=constants.iteration_list,
                  max_attempts=100,
                  population_sizes=population_sizes,
                  mutation_rates=mutation_rates)
    ga_run_stats, ga_run_curves = ga.run()

if algorithm_name == "MIMIC" and False:
    population_sizes = [100]
    keep_percent_list = [0.05, 0.1, 0.2, 0.3, 0.4]
    mimic = MIMICRunner(problem=problem,
                        experiment_name=experiment_name,
                        output_directory=constants.OUTPUT_DIRECTORY,
                        seed=0,
                        iteration_list=[1, 2, 3, 4, 5, 10, 15, 20, 25, 30],
                        population_sizes=population_sizes,
                        max_attempts=100,
                        keep_percent_list=keep_percent_list,
                        use_fast_mimic=True)
    mimic_run_stats, mimic_run_curves = mimic.run()
コード例 #5
0
def run_traveling_salesman():
    OUTPUT_DIRECTORY = './output/TSP_results/3'
    SEED = 903387974
    # Traveling Salesman
    problem = generateTSP(seed=SEED, number_of_cities=22)
    population = [350, 500]
    prob_rates = [0.01, 0.1, 0.3, 0.5]

    # Genetic Algorithm
    ga = GARunner(problem=problem,
                  experiment_name="TSP_Maximize_GA_3",
                  seed=SEED,
                  iteration_list=2 ** np.arange(8),
                  max_attempts=1000,
                  population_sizes=population,
                  mutation_rates=prob_rates,
                  output_directory=OUTPUT_DIRECTORY)
    df_ga_run_stats, df_ga_run_curves = ga.run()
    ga_data_strings = {
        'title': 'Genetic_Algorithms_22_Cities_3',
        'Parameters': ['Mutation Rate', 'Population Size']
    }
    best_fitness = max(df_ga_run_stats['Fitness'])
    print("=============")
    print(best_fitness)
    index_array = np.where(df_ga_run_stats['Fitness'] == best_fitness)
    time = 0
    for i in index_array:
        print(df_ga_run_stats['Mutation Rate'][i])
        print(df_ga_run_stats['Population Size'][i])
        print(df_ga_run_stats['Time'][i])
        print(df_ga_run_stats['Time'][i].sum()/len(df_ga_run_stats['Time'][i]))
    avg_time = time / len(index_array)
    print(avg_time)
    print("============")
    fig = plt.figure(dpi=100, figsize=(11, 8))
    sns.lineplot(x='Iteration', y='Fitness', data=df_ga_run_curves).set_title('GA 22 Cities ' + str(best_fitness) + ' ' + str(avg_time))
    fig.savefig('GA_22_Cities_Seaborn_3.png')
    generate_graphs(df_ga_run_stats, df_ga_run_curves, ga_data_strings)
    plt.show()

    OUTPUT_DIRECTORY = './output/TSP_results/2'
    # MIMIC Algorithm
    mmc = MIMICRunner(problem=problem,
                      experiment_name="TSP_Maximize_MIMIC_2",
                      seed=69,
                      iteration_list=2 ** np.arange(8),
                      max_attempts=500,
                      population_sizes=population,
                      keep_percent_list=prob_rates,
                      use_fast_mimic=False,
                      output_directory=OUTPUT_DIRECTORY)
    # Proportion of samples to keep at each iteration
    df_mmc_run_stats, df_mmc_run_curves = mmc.run()
    mmc_data_strings = {
        'title': 'MIMIC_22_Cities_2',
        'Parameters': ['Population Size', 'Keep Percent']
    }
    print("=============")
    best_fitness = max(df_mmc_run_stats['Fitness'])
    print(best_fitness)
    index_array = np.where(df_mmc_run_stats['Fitness'] == best_fitness)
    print("Index:")
    print(index_array)
    time = 0
    for i in index_array:
        print(df_mmc_run_stats['Keep Percent'][i])
        print(df_mmc_run_stats['Population Size'][i])
        print(df_mmc_run_stats['Time'][i])
        print(df_mmc_run_stats['Time'][i].sum()/len(df_mmc_run_stats['Time'][i]))
    avg_time = time / len(index_array)
    print(avg_time)
    print("============")
    fig = plt.figure(dpi=100, figsize=(11, 8))
    sns.lineplot(x='Iteration', y='Fitness', data=df_mmc_run_curves).set_title('MIMIC 22 Cities ' + str(best_fitness) + ' ' + str(avg_time))
    fig.savefig('MIMIC_22_Cities_Seaborn_2.png')
    generate_graphs(df_mmc_run_stats, df_mmc_run_curves, mmc_data_strings)
    plt.show()

    # Randomized Hill Climbing
    rhc = RHCRunner(problem=problem,
                    experiment_name="TSP_Maximize_RHC_2",
                    seed=SEED,
                    iteration_list=2 ** np.arange(8),
                    max_attempts=500,
                    restart_list=[5, 15, 25, 50, 75, 95],
                    output_directory=OUTPUT_DIRECTORY)
    # Number of random restarts
    df_rhc_run_stats, df_rhc_run_curves = rhc.run()
    rhc_data_string = {
        'title': 'RHC_22_Cities_2',
        'Parameters': ['Restarts']
    }
    best_fitness = max(df_rhc_run_stats['Fitness'])
    print("=============")
    print(best_fitness)
    index_array = np.where(df_rhc_run_stats['Fitness'] == best_fitness)
    time = 0
    for i in index_array:
        print(df_rhc_run_stats['Restarts'][i])
        print(df_rhc_run_stats['Time'][i])
        print(df_rhc_run_stats['Time'][i].sum()/len(df_rhc_run_stats['Time'][i]))
    avg_time = time / len(index_array)
    print(avg_time)
    print("============")
    fig = plt.figure(dpi=100, figsize=(11, 8))
    sns.lineplot(x='Iteration', y='Fitness', data=df_rhc_run_curves).set_title('RHC 22 Cities ' + str(best_fitness) + ' ' + str(avg_time))
    fig.savefig('RHC_22_Cities_Seaborn_2.png')
    generate_graphs(df_rhc_run_stats, df_rhc_run_curves, rhc_data_string)
    plt.show()

    # Simulated Annealing
    sa = SARunner(problem=problem,
                  experiment_name="TSP_Maximize_SA_2",
                  seed=SEED,
                  iteration_list=2 ** np.arange(10),
                  max_attempts=1000,
                  temperature_list=[0.001, 0.05, 0.1, 0.25, 0.5, 0.8],
                  output_directory=OUTPUT_DIRECTORY)
    # Temperature is just the decay

    df_sa_run_stats, df_sa_run_curves = sa.run()
    sa_data_string = {
        'title': 'SA_22_Cities_2',
        'Parameters': ['Temperature']
    }
    best_fitness = max(df_sa_run_stats['Fitness'])
    print("=============")
    print(best_fitness)
    index_array = np.where(df_sa_run_stats['Fitness'] == best_fitness)
    time = 0
    for i in index_array:
        print(df_sa_run_stats['Temperature'][i])
        print(df_sa_run_stats['Time'][i])
        print(df_sa_run_stats['Time'][i].sum() / len(df_sa_run_stats['Time'][i]))
    avg_time = time / len(index_array)
    print(avg_time)
    print("============")
    fig = plt.figure(dpi=100, figsize=(11, 8))
    sns.lineplot(x='Iteration', y='Fitness', data=df_sa_run_curves).set_title('SA 22 Cities ' + str(best_fitness) + ' ' + str(avg_time))
    fig.savefig('SA_22_Cities_Seaborn_2.png')
    generate_graphs(df_sa_run_stats, df_sa_run_curves, sa_data_string)
    plt.show()
コード例 #6
0
def run_knapsack():
    # Knapsack
    OUTPUT_DIRECTORY = './output/Knapsack_results/4'
    SEED = 903387974
    problem = KnapsackGenerator.generate(seed=SEED, number_of_items_types=12, max_item_count=6, max_weight_per_item=26,
                                         max_value_per_item=12, max_weight_pct=0.8)
    population = [50, 130, 210, 500]
    prob_rates = [0.05, 0.3, 0.5, 0.8]

    # Genetic Algorithm
    ga = GARunner(problem=problem,
                  experiment_name="Knapsack_Maximize_GA_4",
                  seed=SEED,
                  iteration_list=2 ** np.arange(6),
                  max_attempts=500,
                  population_sizes=population,
                  mutation_rates=prob_rates,
                  output_directory=OUTPUT_DIRECTORY)
    df_ga_run_stats, df_ga_run_curves = ga.run()
    ga_data_strings = {
        'title': 'Genetic_Algorithms_Knapsack_4',
        'Parameters': ['Mutation Rate', 'Population Size']
    }
    best_fitness = max(df_ga_run_stats['Fitness'])
    print("=============")
    print(best_fitness)
    index_array = np.where(df_ga_run_stats['Fitness'] == best_fitness)
    time = 0
    for i in index_array:
        print(df_ga_run_stats['Mutation Rate'][i])
        print(df_ga_run_stats['Population Size'][i])
        print(df_ga_run_stats['Time'][i])
        print(df_ga_run_stats['Time'][i].sum()/len(df_ga_run_stats['Time'][i]))
    avg_time = time / len(index_array)
    print(avg_time)
    print("============")

    fig = plt.figure(dpi=100, figsize=(11, 8))
    sns.lineplot(x='Iteration', y='Fitness', data=df_ga_run_curves).set_title('GA_Knapsack_' + str(best_fitness) + '_' + str(avg_time))
    fig.savefig('GA_Knapsack_Seaborn_4.png')
    generate_graphs(df_ga_run_stats, df_ga_run_curves, ga_data_strings)
    plt.show()

    # MIMIC Algorithm
    mmc = MIMICRunner(problem=problem,
                      experiment_name="Knapsack_Maximize_MIMIC_4",
                      seed=SEED,
                      iteration_list=2 ** np.arange(6),
                      max_attempts=500,
                      population_sizes=population,
                      keep_percent_list=prob_rates,
                      use_fast_mimic=False,
                      output_directory=OUTPUT_DIRECTORY)
    # Proportion of samples to keep at each iteration
    df_mmc_run_stats, df_mmc_run_curves = mmc.run()
    mmc_data_strings = {
        'title': 'MIMIC_Knapsack_4',
        'Parameters': ['Population Size', 'Keep Percent']
    }
    best_fitness = max(df_mmc_run_stats['Fitness'])
    print("=============")
    print(best_fitness)
    index_array = np.where(df_mmc_run_stats['Fitness'] == best_fitness)
    time = 0
    for i in index_array:
        print(df_mmc_run_stats['Keep Percent'][i])
        print(df_mmc_run_stats['Population Size'][i])
        print(df_mmc_run_stats['Time'][i])
        print(df_mmc_run_stats['Time'][i].sum()/len(df_mmc_run_stats['Time'][i]))
    avg_time = time / len(index_array)
    print(avg_time)
    print("============")
    fig = plt.figure(dpi=100, figsize=(11, 8))
    sns.lineplot(x='Iteration', y='Fitness', data=df_mmc_run_curves).set_title('MIMIC_Knapsack_' + str(best_fitness) + '_' + str(avg_time))
    fig.savefig('MIMIC_Knapsack_Seaborn_4.png')
    generate_graphs(df_mmc_run_stats, df_mmc_run_curves, mmc_data_strings)
    plt.show()

    # Randomized Hill Climbing
    rhc = RHCRunner(problem=problem,
                    experiment_name="Knapsack_Maximize_RHC_4",
                    seed=SEED,
                    iteration_list=2 ** np.arange(2),
                    max_attempts=250,
                    restart_list=[5, 15, 50],
                    output_directory=OUTPUT_DIRECTORY)
    # Number of random restarts
    df_rhc_run_stats, df_rhc_run_curves = rhc.run()
    rhc_data_string = {
        'title': 'RHC_Knapsack_4',
        'Parameters': ['Restarts']
    }
    best_fitness = max(df_rhc_run_stats['Fitness'])
    print("=============")
    print(best_fitness)
    index_array = np.where(df_rhc_run_stats['Fitness'] == best_fitness)
    time = 0
    for i in index_array:
        print(df_rhc_run_stats['Restarts'][i])
        print(df_rhc_run_stats['Time'][i])
        print(df_rhc_run_stats['Time'][i].sum()/len(df_rhc_run_stats['Time'][i]))
    avg_time = time / len(index_array)
    print(avg_time)
    print("============")
    fig = plt.figure(dpi=100, figsize=(11, 8))
    sns.lineplot(x='Iteration', y='Fitness', data=df_rhc_run_curves).set_title('RHC_Knapsack_' + str(best_fitness) + '_' + str(avg_time))
    fig.savefig('RHC_Knapsack_Seaborn_4.png')
    generate_graphs(df_rhc_run_stats, df_rhc_run_curves, rhc_data_string)
    plt.show()

    # Simulated Annealing
    sa = SARunner(problem=problem,
                  experiment_name="Knapsack_Maximize_SA_4",
                  seed=SEED,
                  iteration_list=2 ** np.arange(8),
                  max_attempts=1000,
                  temperature_list=[0.001, 0.05, 0.1, 0.25, 0.5, 0.8],
                  output_directory=OUTPUT_DIRECTORY)
    # Temperature is just the Geometric decay

    df_sa_run_stats, df_sa_run_curves = sa.run()
    sa_data_string = {
        'title': 'SA_Knapsack_4',
        'Parameters': ['Temperature']
    }
    best_fitness = max(df_sa_run_stats['Fitness'])
    print("=============")
    print(best_fitness)
    index_array = np.where(df_sa_run_stats['Fitness'] == best_fitness)
    time = 0
    for i in index_array:
        print(df_sa_run_stats['Temperature'][i])
        print(df_sa_run_stats['Time'][i])
        print(df_sa_run_stats['Time'][i].sum()/len(df_sa_run_stats['Time'][i]))
    avg_time = time / len(index_array)
    print(avg_time)
    print("============")
    fig = plt.figure(dpi=100, figsize=(11, 8))
    sns.lineplot(x='Iteration', y='Fitness', data=df_sa_run_curves).set_title('SA_Knapsack_' + str(best_fitness) + '_' + str(avg_time))
    fig.savefig('SA_Knapsack_Seaborn_4.png')
    generate_graphs(df_sa_run_stats, df_sa_run_curves, sa_data_string)
    plt.show()
コード例 #7
0
def run_continuous_peaks(run_rhc, run_sa, run_ga, run_mimic, find_params):

    np.random.seed(0)

    continuous_peaks_problem = CustomContinuousPeaksGenerator.generate(1, 80)

    rhc_run_iterations = None
    rhc_run_average_restarts = None
    rhc_run_average_time = None

    sa_run_iterations = None
    sa_run_average = None
    sa_run_average_time = None

    ga_run_iterations = None
    ga_run_average = None
    ga_run_average_time = None

    mimic_run_iterations = None
    mimic_run_average = None
    mimic_run_average_time = None

    if run_rhc:

        out_dir = TRAVELING_SALES_PERSON_PATH + RHC_PATH

        if find_params:

            title_dic = {'fontsize': 6, 'fontweight': 'bold'}
            fig, (ax1), = plt.subplots(1, 1, figsize=(3, 2))
            ax1.set_title(
                "Randomized Hill Climbing with Various Restarts \n Continous Peaks Problem",
                title_dic)
            ax1.set_ylabel("Average Fitness Score", title_dic)
            ax1.tick_params(axis="x", labelsize=6)
            ax1.tick_params(axis="y", labelsize=6)
            ax1.set_xlabel("Iteration", title_dic)

            num_restarts = [3, 5, 15, 25, 50]
            restart_params = {3: [], 5: [], 15: [], 25: [], 50: []}

            for param in num_restarts:

                restarts = []
                iterations = []

                for i in range(param):
                    seed = np.random.randint(100)

                    # run RHC runner with param restarts.
                    rhc = RHCRunner(problem=continuous_peaks_problem,
                                    experiment_name="Grid Search Restart " +
                                    str(i) + " of max restarts " + str(param),
                                    output_directory=out_dir,
                                    seed=seed,
                                    iteration_list=np.arange(1, 2200, 100),
                                    max_attempts=500,
                                    restart_list=[0])

                    rhc_run_stats, _ = rhc.run()
                    iterations = rhc_run_stats['Iteration'].tolist()
                    restarts.append(rhc_run_stats['Fitness'].tolist())

                average_restarts = np.mean(np.asarray(restarts), axis=0)
                ax1.plot(iterations,
                         average_restarts,
                         label=str(param) + " Restarts")

            # Put a legend to the right of the current axis
            box = ax1.get_position()
            ax1.set_position([box.x0, box.y0, box.width * 0.99, box.height])
            ax1.legend(loc='best', fontsize=6)
            ax1.grid()
            plt.tight_layout()
            filename = "various restarts CPP problem.png"
            filename = os.path.join(out_dir, filename)
            plt.savefig(filename)

        # Reproduce results from 3 restart run.
        restarts = []
        iterations = []
        times = []
        for i in range(15):

            # run RHC runner with param restarts.
            rhc = RHCRunner(problem=continuous_peaks_problem,
                            experiment_name="RHC CPP",
                            output_directory=out_dir,
                            seed=np.random.randint(100),
                            iteration_list=np.arange(1, 3500, 100),
                            max_attempts=500,
                            restart_list=[0])

            rhc_run_stats, _ = rhc.run()
            rhc_run_iterations = rhc_run_stats['Iteration'].tolist()
            restarts.append(rhc_run_stats['Fitness'].tolist())
            times.append(rhc_run_stats["Time"].iloc[-1] * 1000)

        rhc_run_average_restarts = np.mean(np.asarray(restarts), axis=0)
        rhc_run_average_time = np.mean(times)

    if run_sa:

        out_dir = TRAVELING_SALES_PERSON_PATH + SA_PATH

        if find_params:

            decay_list = [mlrose_hiive.GeomDecay, mlrose_hiive.ExpDecay]

            decay_names = {
                mlrose_hiive.GeomDecay: ('Geometric', 'solid'),
                mlrose_hiive.ExpDecay: ('Exponential', 'dotted'),
                mlrose_hiive.ArithDecay: ('Arithmetic', 'dashed')
            }

            # Arithmetic decay was way too slow. No progress was getting made.
            decay_names = {
                mlrose_hiive.GeomDecay: ('Geometric', 'solid'),
                mlrose_hiive.ExpDecay: ('Exponential', 'dotted')
            }
            #mlrose_hiive.ArithDecay: ('Arithmetic', 'dashed')}

            temperature_list = [1, 10, 50, 100, 250, 500, 1000]

            parameters = []
            for i in decay_list:
                for j in temperature_list:
                    parameters.append((i, j))

            title_dic = {'fontsize': 6, 'fontweight': 'bold'}
            fig, (ax1), = plt.subplots(1, 1, figsize=(5, 2.5))
            ax1.set_title(
                "Simulated Annealing with Various Decay Schedules \n and Initial Temperature",
                title_dic)
            ax1.set_ylabel("Average Fitness Score", title_dic)
            ax1.tick_params(axis="x", labelsize=6)
            ax1.tick_params(axis="y", labelsize=6)
            ax1.set_xlabel("Iteration", title_dic)

            for entry in parameters:

                runs = []
                for i in range(5):
                    sa = SARunner(
                        problem=continuous_peaks_problem,
                        experiment_name=
                        "TSP Simulated Annealing with Decay Schedule" +
                        str(entry[0]) + "and Initial Temperature " +
                        str(entry[1]) + "Run " + str(i),
                        output_directory=out_dir,
                        seed=np.random.randint(100),
                        iteration_list=np.arange(1, 5000, 100),
                        max_attempts=200,
                        decay_list=[entry[0]],
                        temperature_list=[entry[1]])

                    sa_run_stats, _ = sa.run()

                    sa_run_iterations = sa_run_stats['Iteration'].tolist()
                    runs.append(sa_run_stats['Fitness'].tolist())

                sa_run_average = np.mean(np.asarray(runs), axis=0)

                ax1.plot(sa_run_iterations,
                         sa_run_average,
                         linestyle=decay_names[entry[0]][1],
                         label=decay_names[entry[0]][0] + " Init Temp:" +
                         str(entry[1]))

            # Put a legend to the right of the current axis
            box = ax1.get_position()
            ax1.set_position([box.x0, box.y0, box.width * 0.99, box.height])
            ax1.legend(loc='center left', bbox_to_anchor=(1, 0.5), fontsize=6)
            ax1.grid()
            plt.tight_layout()
            filename = "decay_and_initial_temp.png"
            filename = os.path.join(out_dir, filename)
            plt.savefig(filename)

        runs = []
        times = []
        for i in range(5):

            sa = SARunner(
                problem=continuous_peaks_problem,
                experiment_name=
                "TSP Simulated Annealing after Param Tuning Decay Schedule",
                output_directory=out_dir,
                seed=np.random.randint(100),
                iteration_list=np.arange(1, 5000, 100),
                max_attempts=1000,
                decay_list=[mlrose_hiive.GeomDecay],
                temperature_list=[50])

            sa_run_stats, _ = sa.run()

            sa_run_iterations = sa_run_stats['Iteration'].tolist()

            times.append(sa_run_stats["Time"].iloc[-1] * 1000)
            runs.append(sa_run_stats['Fitness'].tolist())

        sa_run_average = np.mean(np.asarray(runs), axis=0)
        sa_run_average_time = np.mean(times)

    if run_ga:

        out_dir = TRAVELING_SALES_PERSON_PATH + GA_PATH

        if find_params:

            population_sizes = [150, 200, 250]

            pop_keys = {250: ('solid')}

            # first iteration revealed a pop size of 150 was sufficient.
            population_sizes = [250]
            mutation_rates = [0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6]
            #pop_keys = {
            #    150: ('solid')
            #}

            parameters = []
            for i in population_sizes:
                for j in mutation_rates:
                    parameters.append((i, j))

            title_dic = {'fontsize': 6, 'fontweight': 'bold'}
            fig, (ax1), = plt.subplots(1, 1, figsize=(3, 2))
            ax1.set_title("Genetic Algorithms with Various Mutation Rates",
                          title_dic)
            ax1.set_ylabel("Average Fitness Score", title_dic)
            ax1.tick_params(axis="x", labelsize=6)
            ax1.tick_params(axis="y", labelsize=6)
            ax1.set_xlabel("Iteration", title_dic)

            for entry in parameters:

                runs = []
                for i in range(5):
                    ga = GARunner(problem=continuous_peaks_problem,
                                  experiment_name="TSP GA with Population" +
                                  str(entry[0]) + "and Mutation Split " +
                                  str(entry[1]),
                                  output_directory=out_dir,
                                  seed=np.random.randint(100),
                                  iteration_list=np.arange(1, 500, 25),
                                  max_attempts=150,
                                  population_sizes=[entry[0]],
                                  mutation_rates=[entry[1]])

                    ga_run_stats, _ = ga.run()

                    ga_run_iterations = ga_run_stats['Iteration'].tolist()
                    runs.append(ga_run_stats['Fitness'].tolist())

                ga_run_average = np.mean(np.asarray(runs), axis=0)

                ax1.plot(ga_run_iterations,
                         ga_run_average,
                         linestyle=pop_keys[entry[0]],
                         label="MutRate:" + str(entry[1]))

            # Put a legend to the right of the current axis
            box = ax1.get_position()
            ax1.legend(loc='best', fontsize=6)
            ax1.grid()
            plt.tight_layout()
            filename = "population_and_mutation_rates.png"
            filename = os.path.join(out_dir, filename)
            plt.savefig(filename)

        runs = []
        times = []
        for i in range(5):

            ga = GARunner(problem=continuous_peaks_problem,
                          experiment_name="CPP GA After Parameter Tuning" +
                          "Run " + str(i),
                          output_directory=out_dir,
                          seed=np.random.randint(100),
                          iteration_list=np.arange(1, 600, 25),
                          max_attempts=150,
                          population_sizes=[250],
                          mutation_rates=[0.3])

            ga_run_stats, _ = ga.run()
            ga_run_iterations = ga_run_stats['Iteration'].tolist()
            times.append(ga_run_stats["Time"].iloc[-1] * 1000)
            runs.append(ga_run_stats['Fitness'].tolist())

        ga_run_average = np.mean(np.asarray(runs), axis=0)
        ga_run_average_time = np.mean(times)

    if run_mimic:

        out_dir = TRAVELING_SALES_PERSON_PATH + MIMIC_PATH

        if find_params:

            population_sizes = [200, 250, 300]

            # Second search, 200 provided the overall best.
            population_sizes = [250]
            keep_percent = [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7]

            pop_keys = {
                250: ('solid'),
            }

            parameters = []
            for i in population_sizes:
                for j in keep_percent:
                    parameters.append((i, j))

            title_dic = {'fontsize': 6, 'fontweight': 'bold'}
            fig, (ax1), = plt.subplots(1, 1, figsize=(3, 2))
            ax1.set_title(
                "Mimic with 250 Population Size and Various \n Keep Percentages",
                title_dic)
            ax1.set_ylabel("Fitness Score", title_dic)
            ax1.tick_params(axis="x", labelsize=6)
            ax1.tick_params(axis="y", labelsize=6)
            ax1.set_xlabel("Iteration", title_dic)

            for entry in parameters:

                runs = []
                for i in range(5):

                    mimic = MIMICRunner(
                        problem=continuous_peaks_problem,
                        experiment_name="TSP Mimic with Population" +
                        str(entry[0]) + "and Keep Percent " + str(entry[1]),
                        output_directory=out_dir,
                        seed=np.random.randint(100),
                        iteration_list=np.arange(1, 250, 25),
                        population_sizes=[entry[0]],
                        keep_percent_list=[entry[1]],
                        max_attempts=5,
                        generate_curves=True,
                        use_fast_mimic=True)

                    df_run_stats, _ = mimic.run()

                    mimic_run_iterations = df_run_stats['Iteration'].tolist()
                    runs.append(df_run_stats['Fitness'].tolist())

                mimic_run_average = np.mean(np.asarray(runs), axis=0)

                ax1.plot(mimic_run_iterations,
                         mimic_run_average,
                         linestyle=pop_keys[entry[0]],
                         label="Keep %:" + str(entry[1]))

            # Put a legend to the right of the current axis
            box = ax1.get_position()
            ax1.set_position([box.x0, box.y0, box.width * 0.99, box.height])
            ax1.legend(loc='best', fontsize=6)
            ax1.grid()
            plt.tight_layout()
            filename = "population_and_keep_percent_rates.png"
            filename = os.path.join(out_dir, filename)
            plt.savefig(filename)

        runs = []
        times = []
        for i in range(5):

            mimic = MIMICRunner(problem=continuous_peaks_problem,
                                experiment_name="CPP Mimic" + "Run " + str(i),
                                output_directory=out_dir,
                                seed=np.random.randint(100),
                                iteration_list=np.arange(1, 150, 5),
                                population_sizes=[250],
                                keep_percent_list=[0.5],
                                max_attempts=50,
                                generate_curves=True,
                                use_fast_mimic=True)

            mimic_run_stats, _ = mimic.run()
            mimic_run_iterations = mimic_run_stats['Iteration'].tolist()
            times.append(mimic_run_stats["Time"].iloc[-1] * 1000)
            runs.append(mimic_run_stats['Fitness'].tolist())

        mimic_run_average = np.mean(np.asarray(runs), axis=0)
        mimic_run_average_time = np.mean(times)

    title_dic = {'fontsize': 6, 'fontweight': 'bold'}
    fig, (fitness_cp, time_cp) = plt.subplots(1, 2, figsize=(6, 2))
    fitness_cp.set_title(
        "Fitness vs Iterations\n Continuous Peak Problem N = 80", title_dic)
    fitness_cp.set_ylabel("Average Fitness Score", title_dic)
    fitness_cp.tick_params(axis="x", labelsize=6)
    fitness_cp.tick_params(axis="y", labelsize=6)
    fitness_cp.set_xlabel("Iteration", title_dic)

    fitness_cp.plot(sa_run_iterations, sa_run_average, label="SA")
    fitness_cp.plot(ga_run_iterations, ga_run_average, label="GA")
    fitness_cp.plot(rhc_run_iterations, rhc_run_average_restarts, label="RHC")
    fitness_cp.plot(mimic_run_iterations, mimic_run_average, label="MIMIC")
    fitness_cp.plot(sa_run_iterations,
                    np.ones((len(sa_run_iterations), 1)) * 151,
                    label="Global\nOptimum",
                    linestyle='--',
                    color='k')

    fitness_cp.legend(loc='best', fontsize=6)

    time_cp.set_xlabel("Time (ms)", title_dic)
    time_cp.set_title("Runtime \n Continuous Peaks Problem N = 80", title_dic)
    time_cp.set_ylabel("Algorithm", title_dic)
    time_cp.tick_params(axis="x", labelsize=6)
    time_cp.tick_params(axis="y", labelsize=6)

    x = ['RHC', 'SA', 'GA', 'MIMIC']
    x_pos = [i for i, _ in enumerate(x)]
    time_cp.set_yticks(x_pos)
    time_cp.set_yticklabels(x)
    time_cp.barh(x_pos, [
        rhc_run_average_time, sa_run_average_time, ga_run_average_time,
        mimic_run_average_time
    ])

    time_cp.grid()
    fitness_cp.grid()
    plt.tight_layout()

    path = TRAVELING_SALES_PERSON_PATH
    filename = "fitness_vs_iteration.png"
    filename = os.path.join(path, filename)
    plt.savefig(filename)

    title_dic = {'fontsize': 6, 'fontweight': 'bold'}
    fig, (fitness_cp, time_cp) = plt.subplots(1, 2, figsize=(6, 2))
    fitness_cp.set_title("Fitness vs Problem Size\n Continuous Peak Problem",
                         title_dic)
    fitness_cp.set_ylabel("Average Fitness Score", title_dic)
    fitness_cp.tick_params(axis="x", labelsize=6)
    fitness_cp.tick_params(axis="y", labelsize=6)
    fitness_cp.set_xlabel("Problem Size(N)", title_dic)

    # Running on different problem set sizes
    sizes = [50, 75, 100, 125, 150]

    rhc_average_size = []
    sa_average_size = []
    ga_average_size = []
    mimic_average_size = []

    rhc_average_time = []
    sa_average_time = []
    ga_average_time = []
    mimic_average_time = []

    for size in sizes:

        continuous_peaks_problem = CustomContinuousPeaksGenerator.generate(
            1, size)

        restarts = []
        iterations = []
        seeds = [44, 43, 29]
        times = []
        for i in range(3):
            seed = seeds[i]

            # run RHC runner with param restarts.
            rhc = RHCRunner(problem=continuous_peaks_problem,
                            experiment_name="RHC CPP",
                            output_directory=out_dir,
                            seed=seed,
                            iteration_list=np.arange(1, 2200, 100),
                            max_attempts=500,
                            restart_list=[0])

            rhc_run_stats, _ = rhc.run()
            rhc_run_iterations = rhc_run_stats['Iteration'].tolist()
            restarts.append(rhc_run_stats['Fitness'].tolist())
            times.append(rhc_run_stats["Time"].iloc[-1] * 1000)

        rhc_run_average_restarts = np.mean(np.asarray(restarts), axis=0)
        rhc_run_average_time = np.mean(times)

        rhc_average_size.append(rhc_run_average_restarts[-1])
        rhc_average_time.append(rhc_run_average_time)

        runs = []
        times = []
        for i in range(5):

            sa = SARunner(
                problem=continuous_peaks_problem,
                experiment_name=
                "TSP Simulated Annealing after Param Tuning Decay Schedule",
                output_directory=out_dir,
                seed=np.random.randint(100),
                iteration_list=np.arange(1, 5000, 100),
                max_attempts=1000,
                decay_list=[mlrose_hiive.GeomDecay],
                temperature_list=[1000])

            sa_run_stats, _ = sa.run()

            sa_run_iterations = sa_run_stats['Iteration'].tolist()

            times.append(sa_run_stats["Time"].iloc[-1] * 1000)
            runs.append(sa_run_stats['Fitness'].tolist())

        sa_run_average = np.mean(np.asarray(runs), axis=0)
        sa_run_average_time = np.mean(times)

        sa_average_size.append(sa_run_average[-1])
        sa_average_time.append(sa_run_average_time)

        runs = []
        times = []
        for i in range(5):

            ga = GARunner(problem=continuous_peaks_problem,
                          experiment_name="CPP GA After Parameter Tuning",
                          output_directory=out_dir,
                          seed=np.random.randint(100),
                          iteration_list=np.arange(1, 500, 25),
                          max_attempts=150,
                          population_sizes=[150],
                          mutation_rates=[0.3])

            ga_run_stats, _ = ga.run()
            ga_run_iterations = ga_run_stats['Iteration'].tolist()
            times.append(ga_run_stats["Time"].iloc[-1] * 1000)
            runs.append(ga_run_stats['Fitness'].tolist())

        ga_run_average = np.mean(np.asarray(runs), axis=0)
        ga_run_average_time = np.mean(times)

        ga_average_size.append(ga_run_average[-1])
        ga_average_time.append(ga_run_average_time)

        runs = []
        times = []
        for i in range(5):

            mimic = MIMICRunner(problem=continuous_peaks_problem,
                                experiment_name="CPP Mimic",
                                output_directory=out_dir,
                                seed=np.random.randint(100),
                                iteration_list=np.arange(1, 150, 5),
                                population_sizes=[250],
                                keep_percent_list=[0.5],
                                max_attempts=50,
                                generate_curves=True,
                                use_fast_mimic=True)

            mimic_run_stats, _ = mimic.run()
            mimic_run_iterations = mimic_run_stats['Iteration'].tolist()
            times.append(mimic_run_stats["Time"].iloc[-1] * 1000)
            runs.append(mimic_run_stats['Fitness'].tolist())

        mimic_run_average = np.mean(np.asarray(runs), axis=0)
        mimic_run_average_time = np.mean(times)

        mimic_average_size.append(mimic_run_average[-1])
        mimic_average_time.append(mimic_run_average_time)

    fitness_cp.plot(sizes, sa_average_size, label="SA")
    fitness_cp.plot(sizes, ga_average_size, label="GA")
    fitness_cp.plot(sizes, rhc_average_size, label="RHC")
    fitness_cp.plot(sizes, mimic_average_size, label="MIMIC")

    fitness_cp.legend(loc='best', fontsize=6)

    time_cp.set_ylabel("Time (ms)", title_dic)
    time_cp.set_title("Runtime vs Problem Size \n Continuous Peaks Problem",
                      title_dic)
    time_cp.set_xlabel("Problem Size(N)", title_dic)
    time_cp.tick_params(axis="x", labelsize=6)
    time_cp.tick_params(axis="y", labelsize=6)

    time_cp.plot(sizes, sa_average_time, label="SA")
    time_cp.plot(sizes, ga_average_time, label="GA")
    time_cp.plot(sizes, rhc_average_time, label="RHC")
    time_cp.plot(sizes, mimic_average_time, label="MIMIC")
    time_cp.legend(loc='best', fontsize=6)

    time_cp.grid()
    fitness_cp.grid()
    plt.tight_layout()

    path = TRAVELING_SALES_PERSON_PATH
    filename = "fitness_vs_iteration_various_problem_sizes.png"
    filename = os.path.join(path, filename)
    plt.savefig(filename)
コード例 #8
0
                             max_val=2)

ga_evals_list = []
df_ga_stats_list = []
df_ga_curves_list = []
for r in range(ga_repeats):
    ga = GARunner(problem=problem,
                  experiment_name="ga_test",
                  output_directory="./results/",
                  seed=r,
                  iteration_list=2 ** np.arange(18),
                  max_attempts=50,
                  population_sizes=[300],
                  mutation_rates=[0.2])

    df_ga_stats, df_ga_curves = ga.run()
    df_ga_stats_list.append(df_ga_stats)
    df_ga_curves_list.append(df_ga_curves)

    print("fitness evaluations: {}".format(eval_count))
    ga_evals_list.append(eval_count)
    eval_count = 0


sa_evals_list = []
df_sa_stats_list = []
df_sa_curves_list = []
for r in range(sa_repeats):
    sa = SARunner(problem=problem,
                  experiment_name="sa_test",
                  output_directory="./results/",
コード例 #9
0
def main():
    experiment_name_ga = 'TSP_Maximize_GA'
    OUTPUT_DIRECTORY = './output'
    problem = TSPGenerator.generate(seed=seed,
                                    number_of_cities=50,
                                    maximize=True)
    ga = GARunner(problem=problem,
                  experiment_name=experiment_name_ga,
                  output_directory=OUTPUT_DIRECTORY,
                  seed=seed,
                  iteration_list=2**np.arange(12),
                  max_attempts=200,
                  population_sizes=[150, 200, 250, 300],
                  mutation_rates=[0.01, 0.02, 0.03, 0.1, 0.2, 0.3, 0.4])
    ga.run()
    experiment_name_mimic = 'TSP_Maximize_MIMIC'
    mmc = MIMICRunner(problem=problem,
                      experiment_name=experiment_name_mimic,
                      output_directory=OUTPUT_DIRECTORY,
                      seed=seed,
                      iteration_list=2**np.arange(12),
                      max_attempts=200,
                      population_sizes=[150, 200, 250, 300],
                      keep_percent_list=[0.01, 0.02, 0.03, 0.1, 0.2, 0.3, 0.4])
    mmc.run()
    experiment_name_rhc = 'TSP_Maximize_RHC'
    rhc = RHCRunner(problem=problem,
                    experiment_name=experiment_name_rhc,
                    output_directory=OUTPUT_DIRECTORY,
                    seed=seed,
                    iteration_list=2**np.arange(12),
                    max_attempts=200,
                    restart_list=[25, 75, 100])
    rhc.run()
    experiment_name_sa = 'TSP_Maximize_SA'
    sa = SARunner(
        problem=problem,
        experiment_name=experiment_name_sa,
        output_directory=OUTPUT_DIRECTORY,
        seed=seed,
        iteration_list=2**np.arange(14),
        max_attempts=200,
        temperature_list=[1, 10, 50, 100, 250, 500, 1000, 2500, 5000, 10000])

    sa.run()

    OUTPUT_DIRECTORY = './output/N_CITIES'
    for i in range(10, 100):
        problem = TSPGenerator.generate(seed=seed,
                                        number_of_cities=i,
                                        maximize=True)
        experiment_name_cities_ga = str(i) + '_' + 'City_Fitness_ga'
        ga = GARunner(problem=problem,
                      experiment_name=experiment_name_cities_ga,
                      output_directory=OUTPUT_DIRECTORY,
                      seed=seed,
                      iteration_list=2**np.arange(12),
                      max_attempts=200,
                      population_sizes=[300],
                      mutation_rates=[0.03])
        ga.run()
        experiment_name_cities_MIMIC = str(i) + '_' + 'City_Fitness_MIMIC'
        mmc = MIMICRunner(problem=problem,
                          experiment_name=experiment_name_cities_MIMIC,
                          output_directory=OUTPUT_DIRECTORY,
                          seed=seed,
                          iteration_list=2**np.arange(12),
                          max_attempts=200,
                          population_sizes=[300],
                          keep_percent_list=[0.2])
        mmc.run()
        experiment_name_cities_RHC = str(i) + '_' + 'City_Fitness_RHC'
        rhc = RHCRunner(problem=problem,
                        experiment_name=experiment_name_cities_RHC,
                        output_directory=OUTPUT_DIRECTORY,
                        seed=seed,
                        iteration_list=2**np.arange(12),
                        max_attempts=200,
                        restart_list=[25])
        rhc.run()
        experiment_name_cities_sa = str(i) + '_' + 'City_Fitness_SA'
        sa = SARunner(problem=problem,
                      experiment_name=experiment_name_cities_sa,
                      output_directory=OUTPUT_DIRECTORY,
                      seed=seed,
                      iteration_list=2**np.arange(14),
                      max_attempts=200,
                      temperature_list=[10])

        sa.run()
コード例 #10
0
def run_knapsack_experiment(run_rhc, run_sa, run_ga, run_mimic, find_params):

    title_dic = {'fontsize': 7, 'fontweight': 'bold'}
    axis_label_size = 7
    tuning_figure_size = (3.5, 2)

    np.random.seed(0)

    problem = CustomKnapSackGenerator.generate(
        1,
        number_of_items_types=100,
        max_item_count=50,
        max_weight_per_item=100,
        max_value_per_item=50,
        max_weight_pct=0.6,
        multiply_by_max_item_count=True,
        crossover=one_point_crossover.OnePointCrossOver,
        mutator=change_one_mutator.ChangeOneMutator)

    rhc_run_iterations = None
    rhc_run_average_restarts = None
    rhc_run_average_time = None

    sa_run_iterations = None
    sa_run_average = None
    sa_run_average_time = None

    ga_run_iterations = None
    ga_run_average = None
    ga_run_average_time = None

    mimic_run_iterations = None
    mimic_run_average = None
    mimic_run_average_time = None

    if run_rhc:

        out_dir = KNAPSACK_PATH + RHC_PATH

        if find_params:

            fig, (ax1), = plt.subplots(1, 1, figsize=tuning_figure_size)
            ax1.set_title(
                "Randomized Hill Climbing with Various Restarts \n Continous Peaks Problem",
                title_dic)
            ax1.set_ylabel("Average Fitness Score", title_dic)
            ax1.tick_params(axis="x", labelsize=axis_label_size)
            ax1.tick_params(axis="y", labelsize=axis_label_size)
            ax1.set_xlabel("Iteration", title_dic)

            num_restarts = [3, 5, 15, 25, 50]
            restart_params = {3: [], 5: [], 15: [], 25: [], 50: []}

            for param in num_restarts:

                restarts = []
                iterations = []

                for i in range(param):
                    seed = np.random.randint(100)

                    # run RHC runner with param restarts.
                    rhc = RHCRunner(problem=problem,
                                    experiment_name="Grid Search Restart " +
                                    str(i) + " of max restarts " + str(param),
                                    output_directory=out_dir,
                                    seed=seed,
                                    iteration_list=np.arange(1, 1000, 100),
                                    max_attempts=500,
                                    restart_list=[0])

                    rhc_run_stats, _ = rhc.run()
                    iterations = rhc_run_stats['Iteration'].tolist()

                    fitness = np.asarray(rhc_run_stats['Fitness'].tolist())

                    restarts.append(fitness)

                average_restarts = np.mean(np.asarray(restarts), axis=0)
                ax1.plot(iterations,
                         average_restarts,
                         label=str(param) + " Restarts")

            # Put a legend to the right of the current axis
            box = ax1.get_position()
            ax1.set_position([box.x0, box.y0, box.width * 0.99, box.height])
            ax1.legend(loc='best', fontsize=6)
            ax1.grid()
            plt.tight_layout()
            filename = "various restarts CPP problem.png"
            filename = os.path.join(out_dir, filename)
            plt.savefig(filename)

        # Reproduce results from 3 restart run.
        restarts = []
        iterations = []
        times = []
        for i in range(15):

            # run RHC runner with param restarts.
            rhc = RHCRunner(problem=problem,
                            experiment_name="RHC QUEENS" + str(i),
                            output_directory=out_dir,
                            seed=np.random.randint(100),
                            iteration_list=np.arange(1, 1000, 100),
                            max_attempts=500,
                            restart_list=[0])

            rhc_run_stats, _ = rhc.run()
            rhc_run_iterations = rhc_run_stats['Iteration'].tolist()
            fitness = np.asarray(rhc_run_stats['Fitness'].tolist())
            restarts.append(fitness)
            times.append(rhc_run_stats["Time"].iloc[-1] * 1000)

        rhc_run_average_restarts = np.mean(np.asarray(restarts), axis=0)
        rhc_run_average_time = np.mean(times)

    if run_sa:

        out_dir = KNAPSACK_PATH + SA_PATH

        if find_params:

            #decay_list = [mlrose_hiive.GeomDecay, mlrose_hiive.ExpDecay]

            # Round two: Exp Decay was better
            decay_list = [mlrose_hiive.ExpDecay]

            decay_names = {
                mlrose_hiive.GeomDecay: ('Geometric', 'dotted'),
                mlrose_hiive.ExpDecay: ('Exponential', 'solid'),
                mlrose_hiive.ArithDecay: ('Arithmetic', 'dashed')
            }

            temperature_list = [500, 1000, 2500, 3500, 4500, 5000]

            parameters = []
            for i in decay_list:
                for j in temperature_list:
                    parameters.append((i, j))

            fig, (ax1), = plt.subplots(1, 1, figsize=tuning_figure_size)
            ax1.set_title(
                "Simulated Annealing with Exponential Decay \n Schedule and Initial Temperature - Knapsack",
                title_dic)
            ax1.set_ylabel("Average Fitness Score", title_dic)
            ax1.tick_params(axis="x", labelsize=axis_label_size)
            ax1.tick_params(axis="y", labelsize=axis_label_size)
            ax1.set_xlabel("Iteration", title_dic)

            for entry in parameters:

                runs = []
                for i in range(5):
                    sa = SARunner(
                        problem=problem,
                        experiment_name=
                        "KnapSack Simulated Annealing with Decay Schedule" +
                        str(entry[0]) + "and Initial Temperature " +
                        str(entry[1]) + "Run " + str(i),
                        output_directory=out_dir,
                        seed=np.random.randint(100),
                        iteration_list=np.arange(1, 2000, 100),
                        max_attempts=1000,
                        decay_list=[entry[0]],
                        temperature_list=[entry[1]])

                    sa_run_stats, _ = sa.run()

                    sa_run_iterations = sa_run_stats['Iteration'].tolist()
                    fitness = np.asarray(sa_run_stats['Fitness'].tolist())
                    runs.append(fitness)

                sa_run_average = np.mean(np.asarray(runs), axis=0)

                ax1.plot(sa_run_iterations,
                         sa_run_average,
                         linestyle=decay_names[entry[0]][1],
                         label="Init Temp:" + str(entry[1]))

            ax1.legend(loc='best', fontsize=6)
            ax1.grid()
            plt.tight_layout()
            filename = "decay_and_initial_temp.png"
            filename = os.path.join(out_dir, filename)
            plt.savefig(filename)

        # Run 5 times and average
        runs = []
        times = []
        for i in range(5):

            sa = SARunner(
                problem=problem,
                experiment_name=
                "Knapsack Simulated Annealing after Param Tuning Decay Schedule "
                + str(i),
                output_directory=out_dir,
                seed=np.random.randint(100),
                iteration_list=np.arange(1, 1500, 100),
                max_attempts=1000,
                decay_list=[mlrose_hiive.ExpDecay],
                temperature_list=[3500])

            sa_run_stats, _ = sa.run()

            sa_run_iterations = sa_run_stats['Iteration'].tolist()

            times.append(sa_run_stats["Time"].iloc[-1] * 1000)
            fitness = np.asarray(sa_run_stats['Fitness'].tolist())
            runs.append(fitness)

        sa_run_average = np.mean(np.asarray(runs), axis=0)
        sa_run_average_time = np.mean(times)

    if run_ga:

        out_dir = KNAPSACK_PATH + GA_PATH

        if find_params:

            population_sizes = [25, 50, 75, 100]

            # first iteration revealed a pop size of 75 was sufficient.
            population_sizes = [75]

            pop_keys = {100: ('dashed'), 50: ('dashed'), 75: ('solid')}

            mutation_rates = [
                0.1,
                0.3,
                0.6,
                0.9,
            ]

            parameters = []
            for i in population_sizes:
                for j in mutation_rates:
                    parameters.append((i, j))

            fig, (ax1), = plt.subplots(1, 1, figsize=tuning_figure_size)
            ax1.set_title(
                "Genetic Algorithms with Population Size 75 & \n Various Mutation Rates - Knapsack",
                title_dic)
            ax1.set_ylabel("Average Fitness Score", title_dic)
            ax1.tick_params(axis="x", labelsize=axis_label_size)
            ax1.tick_params(axis="y", labelsize=axis_label_size)
            ax1.set_xlabel("Iteration", title_dic)

            for entry in parameters:

                runs = []
                for i in range(5):
                    ga = GARunner(
                        problem=problem,
                        experiment_name="Knapsack GA with Population" +
                        str(entry[0]) + "and Mutation Split " + str(entry[1]),
                        output_directory=out_dir,
                        seed=np.random.randint(100),
                        iteration_list=np.arange(1, 1500, 25),
                        max_attempts=150,
                        population_sizes=[entry[0]],
                        mutation_rates=[entry[1]])

                    ga_run_stats, _ = ga.run()

                    fitness = np.asarray(ga_run_stats['Fitness'].tolist())
                    ga_run_iterations = ga_run_stats['Iteration'].tolist()

                    runs.append(fitness)

                ga_run_average = np.mean(np.asarray(runs), axis=0)

                ax1.plot(ga_run_iterations,
                         ga_run_average,
                         linestyle=pop_keys[entry[0]],
                         label="MutRate:" + str(entry[1]))

            ax1.legend(loc='best', fontsize=6, ncol=2)
            ax1.grid()
            plt.tight_layout()
            filename = "population_and_mutation_rates.png"
            filename = os.path.join(out_dir, filename)
            plt.savefig(filename)

        runs = []
        times = []
        for i in range(5):

            ga = GARunner(problem=problem,
                          experiment_name="CPP GA After Parameter Tuning" +
                          "Run " + str(i),
                          output_directory=out_dir,
                          seed=np.random.randint(100),
                          iteration_list=np.arange(1, 1500, 25),
                          max_attempts=150,
                          population_sizes=[75],
                          mutation_rates=[0.9])

            ga_run_stats, _ = ga.run()
            ga_run_iterations = ga_run_stats['Iteration'].tolist()
            times.append(ga_run_stats["Time"].iloc[-1] * 1000)
            fitness = np.asarray(ga_run_stats['Fitness'].tolist())
            runs.append(fitness)

        ga_run_average = np.mean(np.asarray(runs), axis=0)
        ga_run_average_time = np.mean(times)

    if run_mimic:

        out_dir = KNAPSACK_PATH + MIMIC_PATH

        if find_params:

            population_sizes = [25, 50, 100, 150, 200]

            # Pop size of 100 was best tradeoff with time.
            population_sizes = [100]
            keep_percent = [
                0.3,
                0.4,
                0.5,
                0.6,
                0.7,
                0.8,
                0.9,
            ]

            pop_keys = {100: ('solid')}

            parameters = []
            for i in population_sizes:
                for j in keep_percent:
                    parameters.append((i, j))

            fig, (ax1), = plt.subplots(1, 1, figsize=tuning_figure_size)
            ax1.set_title(
                "Mimic with 100 Population Size and Various \n Keep Percentages - Knapsack",
                title_dic)
            ax1.set_ylabel("Average Fitness Score", title_dic)
            ax1.tick_params(axis="x", labelsize=axis_label_size)
            ax1.tick_params(axis="y", labelsize=axis_label_size)
            ax1.set_xlabel("Iteration", title_dic)

            for entry in parameters:

                runs = []
                for i in range(5):

                    mimic = MIMICRunner(
                        problem=problem,
                        experiment_name="Knapsack Mimic with Population" +
                        str(entry[0]) + "and Keep Percent " + str(entry[1]) +
                        "run " + str(i),
                        output_directory=out_dir,
                        seed=np.random.randint(100),
                        iteration_list=np.arange(1, 50, 1),
                        population_sizes=[entry[0]],
                        keep_percent_list=[entry[1]],
                        max_attempts=5,
                        generate_curves=True,
                        use_fast_mimic=True)

                    df_run_stats, _ = mimic.run()

                    mimic_run_iterations = df_run_stats['Iteration'].tolist()
                    fitness = np.asarray(df_run_stats['Fitness'].tolist())
                    runs.append(fitness)

                mimic_run_average = np.mean(np.asarray(runs), axis=0)

                ax1.plot(mimic_run_iterations,
                         mimic_run_average,
                         linestyle=pop_keys[entry[0]],
                         label="Keep %:" + str(entry[1]))

            # Put a legend to the right of the current axis
            ax1.legend(loc='best', fontsize=6)
            ax1.grid()
            plt.tight_layout()
            filename = "population_and_keep_percent_rates.png"
            filename = os.path.join(out_dir, filename)
            plt.savefig(filename)

        runs = []
        times = []
        for i in range(5):

            mimic = MIMICRunner(problem=problem,
                                experiment_name="Knapsack Mimic" + "Run " +
                                str(i),
                                output_directory=out_dir,
                                seed=np.random.randint(100),
                                iteration_list=np.arange(1, 150, 5),
                                population_sizes=[100],
                                keep_percent_list=[0.5],
                                max_attempts=5,
                                generate_curves=True,
                                use_fast_mimic=True)

            mimic_run_stats, _ = mimic.run()
            mimic_run_iterations = mimic_run_stats['Iteration'].tolist()
            times.append(mimic_run_stats["Time"].iloc[-1] * 1000)
            fitness = np.asarray(mimic_run_stats['Fitness'].tolist())
            runs.append(fitness)

        mimic_run_average = np.mean(np.asarray(runs), axis=0)
        mimic_run_average_time = np.mean(times)

    fig, (fitness_cp, time_cp) = plt.subplots(1, 2, figsize=(6, 2))
    fitness_cp.set_title("Fitness vs Iterations\n Knapsack N = 100", title_dic)
    fitness_cp.set_ylabel("Average Fitness Score", title_dic)
    fitness_cp.tick_params(axis="x", labelsize=axis_label_size)
    fitness_cp.tick_params(axis="y", labelsize=axis_label_size)
    fitness_cp.set_xlabel("Iteration", title_dic)

    fitness_cp.plot(sa_run_iterations, sa_run_average, label="SA")
    fitness_cp.plot(ga_run_iterations, ga_run_average, label="GA")
    fitness_cp.plot(rhc_run_iterations, rhc_run_average_restarts, label="RHC")
    fitness_cp.plot(mimic_run_iterations, mimic_run_average, label="MIMIC")

    fitness_cp.legend(loc='best', fontsize=6)

    time_cp.set_xlabel("Log Time (ms)", title_dic)
    time_cp.set_title("Runtime \n Knapsack N = 100", title_dic)
    time_cp.set_ylabel("Algorithm", title_dic)
    time_cp.tick_params(axis="x", labelsize=axis_label_size)
    time_cp.tick_params(axis="y", labelsize=axis_label_size)

    x = ['RHC', 'SA', 'GA', 'MIMIC']
    x_pos = [i for i, _ in enumerate(x)]
    time_cp.set_yticks(x_pos)
    time_cp.set_yticklabels(x)
    time_cp.set_xscale('log')
    time_cp.barh(x_pos, [
        rhc_run_average_time, sa_run_average_time, ga_run_average_time,
        mimic_run_average_time
    ])

    time_cp.grid()
    fitness_cp.grid()
    plt.tight_layout()

    path = KNAPSACK_PATH
    filename = "fitness_vs_iteration.png"
    filename = os.path.join(path, filename)
    plt.savefig(filename)

    fig, (fitness_cp, time_cp) = plt.subplots(1, 2, figsize=(6, 2))
    fitness_cp.set_title("Fitness vs Problem Size\n Knapsack Problem",
                         title_dic)
    fitness_cp.set_ylabel("Average Fitness Score", title_dic)
    fitness_cp.tick_params(axis="x", labelsize=axis_label_size)
    fitness_cp.tick_params(axis="y", labelsize=axis_label_size)
    fitness_cp.set_xlabel("Problem Size(N)", title_dic)

    # Running on different problem set sizes
    sizes = [50, 75, 100, 125, 150]

    rhc_average_size = []
    sa_average_size = []
    ga_average_size = []
    mimic_average_size = []

    rhc_average_time = []
    sa_average_time = []
    ga_average_time = []
    mimic_average_time = []

    out_dir = KNAPSACK_PATH

    for size in sizes:

        problem = CustomKnapSackGenerator.generate(
            1,
            number_of_items_types=size,
            max_item_count=50,
            max_weight_per_item=100,
            max_value_per_item=50,
            max_weight_pct=0.6,
            multiply_by_max_item_count=True,
            crossover=one_point_crossover.OnePointCrossOver,
            mutator=change_one_mutator.ChangeOneMutator)

        restarts = []
        iterations = []
        times = []
        for i in range(15):
            # run RHC runner with param restarts.
            rhc = RHCRunner(problem=problem,
                            experiment_name="RHC QUEENS" + str(i),
                            output_directory=out_dir,
                            seed=np.random.randint(100),
                            iteration_list=np.arange(1, 1000, 100),
                            max_attempts=500,
                            restart_list=[0])

            rhc_run_stats, _ = rhc.run()
            rhc_run_iterations = rhc_run_stats['Iteration'].tolist()
            restarts.append(rhc_run_stats['Fitness'].tolist())
            times.append(rhc_run_stats["Time"].iloc[-1] * 1000)

        rhc_run_average_restarts = np.mean(np.asarray(restarts), axis=0)
        rhc_run_average_time = np.mean(times)

        rhc_average_size.append(rhc_run_average_restarts[-1])
        rhc_average_time.append(rhc_run_average_time)

        runs = []
        times = []
        for i in range(5):

            sa = SARunner(
                problem=problem,
                experiment_name=
                "Knapsack Simulated Annealing after Param Tuning Decay Schedule "
                + str(i),
                output_directory=out_dir,
                seed=np.random.randint(100),
                iteration_list=np.arange(1, 1500, 100),
                max_attempts=1000,
                decay_list=[mlrose_hiive.ExpDecay],
                temperature_list=[3500])

            sa_run_stats, _ = sa.run()

            sa_run_iterations = sa_run_stats['Iteration'].tolist()

            times.append(sa_run_stats["Time"].iloc[-1] * 1000)
            runs.append(sa_run_stats['Fitness'].tolist())

        sa_run_average = np.mean(np.asarray(runs), axis=0)
        sa_run_average_time = np.mean(times)

        sa_average_size.append(sa_run_average[-1])
        sa_average_time.append(sa_run_average_time)

        runs = []
        times = []
        for i in range(5):

            ga = GARunner(problem=problem,
                          experiment_name="CPP GA After Parameter Tuning" +
                          "Run " + str(i),
                          output_directory=out_dir,
                          seed=np.random.randint(100),
                          iteration_list=np.arange(1, 1500, 25),
                          max_attempts=150,
                          population_sizes=[75],
                          mutation_rates=[0.9])

            ga_run_stats, _ = ga.run()
            ga_run_iterations = ga_run_stats['Iteration'].tolist()
            times.append(ga_run_stats["Time"].iloc[-1] * 1000)
            runs.append(ga_run_stats['Fitness'].tolist())

        ga_run_average = np.mean(np.asarray(runs), axis=0)
        ga_run_average_time = np.mean(times)

        ga_average_size.append(ga_run_average[-1])
        ga_average_time.append(ga_run_average_time)

        runs = []
        times = []
        for i in range(5):

            mimic = MIMICRunner(problem=problem,
                                experiment_name="Knapsack Mimic" + "Run " +
                                str(i),
                                output_directory=out_dir,
                                seed=np.random.randint(100),
                                iteration_list=np.arange(1, 150, 5),
                                population_sizes=[100],
                                keep_percent_list=[0.5],
                                max_attempts=5,
                                generate_curves=True,
                                use_fast_mimic=True)

            mimic_run_stats, _ = mimic.run()
            mimic_run_iterations = mimic_run_stats['Iteration'].tolist()
            times.append(mimic_run_stats["Time"].iloc[-1] * 1000)
            runs.append(mimic_run_stats['Fitness'].tolist())

        mimic_run_average = np.mean(np.asarray(runs), axis=0)
        mimic_run_average_time = np.mean(times)

        mimic_average_size.append(mimic_run_average[-1])
        mimic_average_time.append(mimic_run_average_time)

    fitness_cp.plot(sizes, sa_average_size, label="SA")
    fitness_cp.plot(sizes, ga_average_size, label="GA")
    fitness_cp.plot(sizes, rhc_average_size, label="RHC")
    fitness_cp.plot(sizes, mimic_average_size, label="MIMIC")

    fitness_cp.legend(loc='best', fontsize=6)

    time_cp.set_ylabel("Log Time (ms)", title_dic)
    time_cp.set_title("Runtime vs Problem Size \n Knapsack Problem", title_dic)
    time_cp.set_xlabel("Problem Size(N)", title_dic)
    time_cp.tick_params(axis="x", labelsize=axis_label_size)
    time_cp.tick_params(axis="y", labelsize=axis_label_size)
    time_cp.set_yscale('log')

    time_cp.plot(sizes, sa_average_time, label="SA")
    time_cp.plot(sizes, ga_average_time, label="GA")
    time_cp.plot(sizes, rhc_average_time, label="RHC")
    time_cp.plot(sizes, mimic_average_time, label="MIMIC")
    time_cp.legend(loc='best', fontsize=6)

    time_cp.grid()
    fitness_cp.grid()
    plt.tight_layout()

    path = KNAPSACK_PATH
    filename = "fitness_vs_iteration_various_problem_sizes.png"
    filename = os.path.join(path, filename)
    plt.savefig(filename)