def searchSolve(self, X, Y, updates, randomState=None): if "max_attempts" in updates: tempAttempts = updates["max_attempts"] else: tempAttempts = self.maxAttempts if "restarts" in updates: tempRestarts = updates["restarts"] else: tempRestarts = self.numRestarts if randomState is None: tempRandomState = self.randomState else: tempRandomState = randomState if "learning_rate" in updates: tempLearnRate = updates["learning_rate"] else: tempLearnRate = self.learnRate if "max_iters" in updates: tempMaxIters = updates["max_iters"] else: tempMaxIters = self.maxIters self.model = mlrose.NeuralNetwork(hidden_nodes = [5], activation = 'relu', \ algorithm = self.algorithm, max_iters = tempMaxIters, \ bias = True, is_classifier = True, learning_rate = tempLearnRate, \ early_stopping = True, clip_max = 1e10, max_attempts = tempAttempts, \ restarts = tempRestarts, curve = True, random_state = tempRandomState) self.model.fit(X, Y) yPred = self.model.predict(X) score = metrics.accuracy_score(Y, yPred) return score
def createModel(self): self.model = mlrose.NeuralNetwork(hidden_nodes = [5], activation = 'relu', \ algorithm = self.algorithm, max_iters = self.maxIters, \ bias = True, is_classifier = True, learning_rate = self.learnRate, \ early_stopping = False, clip_max = 1e10, max_attempts = self.maxAttempts, \ pop_size = self.popSize, mutation_prob = self.mutationProb, \ curve = True, random_state = self.randomState)
def solve(self, X, Y): self.model = mlrose.NeuralNetwork(hidden_nodes = [5], activation = 'relu', \ algorithm = self.algorithm, max_iters = self.maxIters, \ bias = True, is_classifier = True, learning_rate = self.learnRate, \ early_stopping = False, clip_max = 1e10, max_attempts = self.maxAttempts, \ restarts = self.numRestarts, curve = True, random_state = self.randomState) self.model.fit(X, Y) yPred = self.model.predict(X) score = metrics.accuracy_score(Y, yPred) return score