async def startup_event(): logger.info( "configuration dump", dumped_config=config.dump_yaml(), version=mlrun.utils.version.Version().get(), ) loop = asyncio.get_running_loop() # Using python 3.8 default instead of 3.7 one - max(1, os.cpu_count()) * 5 cause it's causing to high memory # consumption - https://bugs.python.org/issue35279 # TODO: remove when moving to python 3.8 max_workers = config.httpdb.max_workers or min(32, os.cpu_count() + 4) loop.set_default_executor( concurrent.futures.ThreadPoolExecutor(max_workers=max_workers)) initialize_logs_dir() initialize_db() if config.httpdb.state == mlrun.api.schemas.APIStates.online: await move_api_to_online()
async def _initialize_singletons(): initialize_logs_dir() initialize_db() initialize_project_member() await initialize_scheduler()