コード例 #1
0
def my_job():
    # load MLRUN runtime context (will be set by the runtime framework e.g. KubeFlow)
    context = get_or_create_ctx('train')
    
    # get parameters from the runtime context (or use defaults)
    p1 = context.get_param('p1', 1)
    p2 = context.get_param('p2', 'a-string')

    # access input metadata, values, files, and secrets (passwords)
    print(f'Run: {context.name} (uid={context.uid})')
    print(f'Params: p1={p1}, p2={p2}')
    print('accesskey = {}'.format(context.get_secret('ACCESS_KEY')))
    print('file\n{}\n'.format(context.get_input('infile.txt', 'infile.txt').get()))
    
    # Run some useful code e.g. ML training, data prep, etc.

    # log scalar result values (job result metrics)
    context.log_result('accuracy', p1 * 2)
    context.log_result('loss', p1 * 3)
    context.set_label('framework', 'sklearn')

    # log various types of artifacts (file, web page, table), will be versioned and visible in the UI
    context.log_artifact('model', body=b'abc is 123', target_path='model.txt', labels={'framework': 'xgboost'})
    context.log_artifact('html_result', body=b'<b> Some HTML <b>', target_path='result.html', viewer='web-app')
    context.log_artifact(TableArtifact('dataset', '1,2,3\n4,5,6\n',
                                        viewer='table', header=['A', 'B', 'C']), target_path='dataset.csv')

    # create a chart output (will show in the pipelines UI)
    chart = ChartArtifact('chart.html')
    chart.labels = {'type': 'roc'}
    chart.header = ['Epoch', 'Accuracy', 'Loss']
    for i in range(1, 8):
        chart.add_row([i, i/20+0.75, 0.30-i/20])
    context.log_artifact(chart)
コード例 #2
0
def my_job(context, p1=1, p2='x'):
    # load MLRUN runtime context (will be set by the runtime framework e.g. KubeFlow)

    # get parameters from the runtime context (or use defaults)

    # access input metadata, values, files, and secrets (passwords)
    print(f'Run: {context.name} (uid={context.uid})')
    print(f'Params: p1={p1}, p2={p2}')
    print('accesskey = {}'.format(context.get_secret('ACCESS_KEY')))
    print('file\n{}\n'.format(
        context.get_input('infile.txt', 'infile.txt').get()))

    # Run some useful code e.g. ML training, data prep, etc.

    # log scalar result values (job result metrics)
    context.log_result('accuracy', p1 * 2)
    context.log_result('loss', p1 * 3)
    context.set_label('framework', 'sklearn')

    # log various types of artifacts (file, web page, table), will be versioned and visible in the UI
    context.log_artifact('model',
                         body=b'abc is 123',
                         local_path='model.txt',
                         labels={'framework': 'xgboost'})
    context.log_artifact('html_result',
                         body=b'<b> Some HTML <b>',
                         local_path='result.html')
    context.log_artifact(TableArtifact('dataset',
                                       '1,2,3\n4,5,6\n',
                                       visible=True,
                                       header=['A', 'B', 'C']),
                         local_path='dataset.csv')

    # create a chart output (will show in the pipelines UI)
    chart = ChartArtifact('chart')
    chart.labels = {'type': 'roc'}
    chart.header = ['Epoch', 'Accuracy', 'Loss']
    for i in range(1, 8):
        chart.add_row([i, i / 20 + 0.75, 0.30 - i / 20])
    context.log_artifact(chart)

    raw_data = {
        'first_name': ['Jason', 'Molly', 'Tina', 'Jake', 'Amy'],
        'last_name': ['Miller', 'Jacobson', 'Ali', 'Milner', 'Cooze'],
        'age': [42, 52, 36, 24, 73],
        'testScore': [25, 94, 57, 62, 70]
    }
    df = pd.DataFrame(raw_data,
                      columns=['first_name', 'last_name', 'age', 'testScore'])
    context.log_dataset('mydf', df=df, stats=True)


#if __name__ == "__main__":
#    context = get_or_create_ctx('train')
#    p1 = context.get_param('p1', 1)
#    p2 = context.get_param('p2', 'a-string')
#    my_job(context, p1, p2)
コード例 #3
0
ファイル: training.py プロジェクト: rpatil524/mlrun
def my_job(context, p1=1, p2="x"):
    # load MLRUN runtime context (will be set by the runtime framework e.g. KubeFlow)

    # get parameters from the runtime context (or use defaults)

    # access input metadata, values, files, and secrets (passwords)
    print(f"Run: {context.name} (uid={context.uid})")
    print(f"Params: p1={p1}, p2={p2}")
    access_key = context.get_secret("ACCESS_KEY")
    print(f"Access key = {access_key}")
    input_file = context.get_input("infile.txt", "infile.txt").get()
    print(f"File\n{input_file}\n")

    # Run some useful code e.g. ML training, data prep, etc.

    # log scalar result values (job result metrics)
    context.log_result("accuracy", p1 * 2)
    context.log_result("loss", p1 * 3)
    context.set_label("framework", "sklearn")

    # log various types of artifacts (file, web page, table), will be versioned and visible in the UI
    context.log_artifact(
        "model",
        body=b"abc is 123",
        local_path="model.txt",
        labels={"framework": "xgboost"},
    )
    context.log_artifact("html_result",
                         body=b"<b> Some HTML <b>",
                         local_path="result.html")

    # create a chart output (will show in the pipelines UI)
    chart = ChartArtifact("chart")
    chart.labels = {"type": "roc"}
    chart.header = ["Epoch", "Accuracy", "Loss"]
    for i in range(1, 8):
        chart.add_row([i, i / 20 + 0.75, 0.30 - i / 20])
    context.log_artifact(chart)

    raw_data = {
        "first_name": ["Jason", "Molly", "Tina", "Jake", "Amy"],
        "last_name": ["Miller", "Jacobson", "Ali", "Milner", "Cooze"],
        "age": [42, 52, 36, 24, 73],
        "testScore": [25, 94, 57, 62, 70],
    }
    df = pd.DataFrame(raw_data,
                      columns=["first_name", "last_name", "age", "testScore"])
    context.log_dataset("mydf", df=df, stats=True)