'n_estimators': 500, 'max_depth': 4, 'min_samples_split': 2, 'learning_rate': 0.01, 'loss': 'ls', } clf = ensemble.GradientBoostingRegressor(**params) clf.fit(X_train, y_train) y_pred = clf.predict(X_test) mse = mean_squared_error(y_test, clf.predict(X_test)) print('MSE: %.4f' % mse) columns = list(boston.feature_names) + ['target'] data = np.c_[boston.data, boston.target] df = pd.DataFrame(data=data, columns=columns) model_file = 'boston_gbr.pkl' print('Writing model') with open(model_file, 'wb') as f: pickle.dump(clf, f) print('Writing dataset schema') schema = build_schema(df) with open('boston_schema.json', 'w') as f: json.dump(schema, f, indent=4, sort_keys=True)
'has_profile_picture', 'Private.account' ] target_name = 'rating' dtypes = { 'Number.of.posts': 'uint32', 'Number.of.people.they.follow': 'uint32', 'Number.of.followers': 'uint32', 'has_profile_picture': 'bool', 'Private.account': 'bool', } data = pd.read_csv('labelled_1000_inclprivate.csv', dtype=dtypes) X_train = data[columns] y_train = data[target_name] original = pd.concat([X_train, y_train], axis=1) rfc = RandomForestClassifier(n_estimators=100) rfc.fit(X_train, y_train) print(rfc.predict_proba(X_train)) print('Writing model') with open('instgram_rf.pkl', 'wb') as f: cloudpickle.dump(rfc, f) print('Writing dataset schema') schema = build_schema(original) with open('instagram.json', 'w') as f: json.dump(schema, f, indent=4, sort_keys=True)
#model from statsmodels.tsa.vector_ar.vecm import VECM vecm = VECM(endog = endog,exog=exog,exog_coint=exog_coint, k_ar_diff = 1, coint_rank = 5, deterministic ='cili') vecm_fit = vecm.fit() import pickle with open('VECM_result.pkl', 'wb') as f: pickle.dump(vecm_fit ,f) pip install git+https://github.com/ml-libs/mlserve.git import mlserve import json from mlserve import build_schema data_schema = mlserve.build_schema(df1) with open('ReSAKSS.json', 'w') as f: json.dump(data_schema, f)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=123, stratify=y) pipeline = make_pipeline(StandardScaler(), RandomForestRegressor(n_estimators=100)) hyperparameters = { 'randomforestregressor__max_features': ['auto', 'sqrt', 'log2'], 'randomforestregressor__max_depth': [None, 5], } clf = GridSearchCV(pipeline, hyperparameters, cv=5) clf.fit(X_train, y_train) pred = clf.predict(X_test) print(r2_score(y_test, pred)) print(mean_squared_error(y_test, pred)) model_file = 'wine_quality_rf.pkl' print('Writing model') with open(model_file, 'wb') as f: pickle.dump(clf, f) print('Writing dataset schema') schema = mlserve.build_schema(data) with open('wine_quality_schema.json', 'w') as f: json.dump(schema, f, indent=4, sort_keys=True)