def xgboost_inference_request(inference_request: InferenceRequest) -> InferenceRequest: # Reshape to 2D array, matching the input data to xgboost_model single_input = inference_request.inputs[0] single_input.data = single_input.data = [[1, 2, 3]] # Keep only a single input inference_request.inputs = [single_input] return inference_request
def xgboost_inference_request( inference_request: InferenceRequest) -> InferenceRequest: # Reshape to 2D array, matching the input data to xgboost_model single_input = inference_request.inputs[0] single_input.data = TensorData.parse_obj([[1, 2, 3]]) single_input.shape = [1, 3] # Keep only a single input inference_request.inputs = [single_input] return inference_request
def sklearn_inference_request(inference_request: InferenceRequest) -> InferenceRequest: # Keep only a single input inference_request.inputs = inference_request.inputs[:1] return inference_request
def test_first_input_decode(inference_request: InferenceRequest, expected: np.ndarray): inference_request.inputs = [inference_request.inputs[0]] first_input = NumpyRequestCodec.decode(inference_request) np.testing.assert_equal(first_input, expected)