def __init__(self, obj, X=None, X_train=None, y_pred=None, y_true=None, y_train=None, y_true_train=None, store_X=False, prob_return=False, digits=3): self.model = obj self.n_class = np.shape(obj.classes_)[0] self.labels = obj.classes_ self.variables = obj.n_features_ self.priors_weight, self.prior_size = _prior(y_true, digits) self.labels_pred, self.labels_true, self.y_pred_prob, self.class_weight, self.class_size, self.acc, \ self.prc, self.rcl, self.f1, self.conf, self.y_train, self.y_pred_prob_train, \ self.class_weight_train, self.class_size_train, self.acc_train, \ self.prc_train, self.rcl_train, self.f1_train, self.conf_train, self.ce, self.ce_train, self.y_true_train = _class_pred( obj, X, X_train, y_pred, y_train, y_true, y_true_train, prob_return, digits) self.X = _store_X(X, store_X) self.X_train = _store_X(X_train, store_X) self.n_estimators = obj.n_estimators self.base_estimator = obj.base_estimator_ self.criterion = obj.base_estimator_.criterion self.max_depth = obj.base_estimator_.max_depth self.max_leaf_nodes = obj.base_estimator_.max_leaf_nodes self.ccp_alpha = obj.base_estimator_.ccp_alpha self.min_samples_leaf = obj.base_estimator_.min_samples_leaf self.min_samples_split = obj.base_estimator_.min_samples_split self.max_features = obj.max_features self.bootstrap = obj.bootstrap self.bootstrap_features = obj.bootstrap_features
def __init__(self, obj, X=None, X_train=None, y_pred=None, y_true=None, y_train=None, y_true_train=None, store_X=False, prob_return=False, digits=3): self.model = obj self.n_class = np.shape(obj.classes_)[0] self.labels = obj.classes_ self.variables = obj.n_features_in_ self.priors_weight, self.prior_size = _prior(y_true, digits) self.labels_pred, self.labels_true, self.y_pred_prob, self.class_weight, self.class_size, self.acc, \ self.prc, self.rcl, self.f1, self.conf, self.y_train, self.y_pred_prob_train, \ self.class_weight_train, self.class_size_train, self.acc_train, \ self.prc_train, self.rcl_train, self.f1_train, self.conf_train, self.ce, self.ce_train, self.y_true_train = _class_pred( obj, X, X_train, y_pred, y_train, y_true, y_true_train, prob_return, digits) self.X = _store_X(X, store_X) self.X_train = _store_X(X_train, store_X) self.n_estimators = obj.n_estimators self.algorithm = obj.algorithm self.base_estimator_ = obj.base_estimator_ self.learning_rate = obj.learning_rate self.estimator_weights_ = obj.estimator_weights_ self.estimator_errors_ = obj.estimator_errors_ self.feature_importances = _features_important( obj.feature_importances_, X)
def __init__(self, obj, X=None, X_train=None, y_pred=None, y_true=None, y_train=None, y_true_train=None, store_X=False, prob_return=False, digits=3): self.model = obj self.n_class = np.shape(obj.classes_)[0] self.labels = obj.classes_ self.variables = obj.n_features_in_ self.priors_weight, self.prior_size = _prior(y_true, digits) self.labels_pred, self.labels_true, self.y_pred_prob, self.class_weight, self.class_size, self.acc, \ self.prc, self.rcl, self.f1, self.conf, self.y_train, self.y_pred_prob_train, \ self.class_weight_train, self.class_size_train, self.acc_train, \ self.prc_train, self.rcl_train, self.f1_train, self.conf_train, self.ce, self.ce_train, self.y_true_train = _class_pred( obj, X, X_train, y_pred, y_train, y_true, y_true_train, prob_return, digits) self.X = _store_X(X, store_X) self.X_train = _store_X(X_train, store_X) self.n_estimators = obj.n_estimators self.objective = obj.objective self.learning_rate = obj.learning_rate self.reg_alpha = obj.reg_alpha self.reg_lambda = obj.reg_lambda self.feature_importances = _features_important( obj.feature_importances_, X) self.min_child_weight = obj.min_child_weight self.gamma = obj.gamma self.booster = obj.booster self.max_delta_step = obj.max_delta_step
def __init__(self, obj, X=None, X_train=None, y_pred=None, y_true=None, y_train=None, y_true_train=None, store_X=False, prob_return=False, digits=3): self.model = obj self.n_class = np.shape(obj.classes_)[0] self.labels = obj.classes_ self.variables = np.shape(obj.means_)[1] self.priors_weight, self.prior_size = _prior(y_true, digits) self.class_prior = pd.Series(obj.priors_) self.labels_pred, self.labels_true, self.y_pred_prob, self.class_weight, self.class_size, self.acc, \ self.prc, self.rcl, self.f1, self.conf, self.y_train, self.y_pred_prob_train, \ self.class_weight_train, self.class_size_train, self.acc_train, \ self.prc_train, self.rcl_train, self.f1_train, self.conf_train, self.ce, self.ce_train, self.y_true_train = _class_pred(obj, X, X_train, y_pred, y_train, y_true, y_true_train, prob_return, digits) #self.means = _class_centers(obj.means_) self.X = _store_X(X, store_X) self.X_train = _store_X(X_train, store_X) self.intercept = obj.intercept_ self.coef = obj.coef_ self.solver = obj.solver self.shrinkage = obj.shrinkage
def __init__(self, obj, X=None, X_train=None, y_pred=None, y_true=None, y_train=None, y_true_train=None, store_X=False, prob_return=False, digits=3): self.model = obj self.n_class = np.shape(obj.classes_)[0] self.labels = obj.classes_ self.variables = obj.n_features_in_ self.priors_weight, self.prior_size = _prior(y_true, digits) self.labels_pred, self.labels_true, self.y_pred_prob, self.class_weight, self.class_size, self.acc, \ self.prc, self.rcl, self.f1, self.conf, self.y_train, self.y_pred_prob_train, \ self.class_weight_train, self.class_size_train, self.acc_train, \ self.prc_train, self.rcl_train, self.f1_train, self.conf_train, self.ce, self.ce_train, self.y_true_train = _class_pred( obj, X, X_train, y_pred, y_train, y_true, y_true_train, prob_return, digits) self.X = _store_X(X, store_X) self.X_train = _store_X(X_train, store_X) self.n_neighbors = obj.n_neighbors self.radius = obj.radius self.metric = obj.effective_metric_ self.p = obj.p self.metric_params = obj.metric_params self.weights = obj.weights
def __init__(self, obj, X=None, y_pred=None, y_true=None, store_X=False, digits=3): self.model = obj self.n_class = np.shape(obj.classes_)[0] self.labels = obj.classes_ self.variables = obj.n_features_in_ self.labels_pred = y_pred self.labels_true = y_true self.priors_weight, self.prior_size = _prior(y_true, digits) self.y_pred, self.y_true, self.y_pred_prob, self.class_weight, self.class_size, self.acc, \ self.prc, self.rcl, self.f1, self.conf, self.ce = _class_pred(obj, X, y_pred, y_true, digits) self.X = _store_X(X, store_X) self.n_neighbors = obj.n_neighbors self.radius = obj.radius self.metric = self.effective_metric_ self.p = obj.p self.fit_method = obj._fit_method self.leaf_size = obj.leaf_size self.p = obj.p self.contamination = obj.offset_ self.novelty = obj.novelty self.negative_outlier_factor_ = pd.DataFrame( obj.negative_outlier_factor_)
def __init__(self, obj, X=None, X_train = None, y_pred=None, y_true=None, y_train = None, y_true_train = None, store_X=False, prob_return=False, digits = 3): self.model = obj self.n_class = np.shape(obj.classes_)[0] self.labels = obj.classes_ self.variables = obj.n_features_in_ self.priors_weight, self.prior_size = _prior(y_true, digits) self.labels_pred, self.labels_true, self.y_pred_prob, self.class_weight, self.class_size, self.acc, \ self.prc, self.rcl, self.f1, self.conf, self.y_train, self.y_pred_prob_train, \ self.class_weight_train, self.class_size_train, self.acc_train, \ self.prc_train, self.rcl_train, self.f1_train, self.conf_train, self.ce, self.ce_train, self.y_true_train = _class_pred( obj, X, X_train, y_pred, y_train, y_true, y_true_train, prob_return, digits) self.centroids = obj.centroids_ self.X = _store_X(X, store_X) self.X_train = _store_X(X_train, store_X) self.shrink_threshold = obj.shrink_threshold self.metric = obj.metric
def __init__(self, obj, X=None, X_train = None, y_pred=None, y_true=None, y_train = None, y_true_train = None, store_X=False, prob_return=False, digits = 3): self.model = obj self.n_class = np.shape(obj.classes_)[0] self.labels = obj.classes_ self.variables = np.shape(obj.theta_)[1] self.priors_weight = pd.Series(obj.class_prior_) self.labels_pred, self.labels_true, self.y_pred_prob, self.class_weight, self.class_size, self.acc, \ self.prc, self.rcl, self.f1, self.conf, self.y_train, self.y_pred_prob_train, \ self.class_weight_train, self.class_size_train, self.acc_train, \ self.prc_train, self.rcl_train, self.f1_train, self.conf_train, self.ce, self.ce_train, self.y_true_train = _class_pred( obj, X, X_train, y_pred, y_train, y_true, y_true_train, prob_return, digits) self.means = _clust_centers(obj.theta_) self.X = _store_X(X, store_X) self.X_train = _store_X(X_train, store_X) self.sigma = pd.DataFrame(obj.sigma_) self.epsilon = obj.epsilon_ self.var_smoothing = obj.var_smoothing
def __init__(self, obj, X=None, X_train = None, y_pred=None, y_true=None, y_train = None, y_true_train = None, store_X=False, prob_return=False, digits = 3): self.model = obj self.n_class = obj.n_classes #self.labels = obj.classes_ self.variables = obj._n_features self.priors_weight, self.prior_size = _prior(y_true, digits) self.labels_pred, self.labels_true, self.y_pred_prob, self.class_weight, self.class_size, self.acc, \ self.prc, self.rcl, self.f1, self.conf, self.y_train, self.y_pred_prob_train, \ self.class_weight_train, self.class_size_train, self.acc_train, \ self.prc_train, self.rcl_train, self.f1_train, self.conf_train, self.ce, self.ce_train, self.y_true_train = _class_pred( obj, X, X_train, y_pred, y_train, y_true, y_true_train, prob_return, digits) self.X = _store_X(X, store_X) self.X_train = _store_X(X_train, store_X) self.b = obj.b_ self.w = obj.w_ self.regularization = obj.l2 self.learning_rate = obj.eta self.epochs = obj.epochs self.cross_entropy = obj.cost_ self.minibatches = obj.minibatches
def __init__(self, obj, X=None, X_train=None, y_pred=None, y_true=None, y_train=None, y_true_train=None, store_X=False, prob_return=False, digits=3): self.model = obj self.n_class = np.shape(obj.classes_)[0] self.labels = obj.classes_ self.variables = obj.n_features_in_ self.priors_weight, self.prior_size = _prior(y_true, digits) self.labels_pred, self.labels_true, self.y_pred_prob, self.class_weight, self.class_size, self.acc, \ self.prc, self.rcl, self.f1, self.conf, self.y_train, self.y_pred_prob_train, \ self.class_weight_train, self.class_size_train, self.acc_train, \ self.prc_train, self.rcl_train, self.f1_train, self.conf_train, self.ce, self.ce_train, self.y_true_train = _class_pred( obj, X, X_train, y_pred, y_train, y_true, y_true_train, prob_return, digits) self.X = _store_X(X, store_X) self.X_train = _store_X(X_train, store_X) self.C = obj.C self.kernel = obj.kernel self.degree = obj.degree self.gamma = obj.gamma self.shrinking = obj.shrinking self.support_vectors_ = pd.DataFrame(obj.support_vectors_) self.n_support = pd.DataFrame(obj.n_support_) self.decision_function = obj.decision_function_shape