def test_batch_norm_full_init(self): T.random.seed(1234) orig_input = T.random.randn([35, 4]) inputs = T.split(orig_input, sections=[7] * 5, axis=0) mean, var = T.calculate_mean_and_var(orig_input, axis=[0]) layer = tk.layers.Sequential([ tk.layers.BatchNorm(4, momentum=0.125), ]) def step_fn(input): _ = layer(input) def data_generator(): for input in inputs: yield (input, ) for i in range(4): if i == 2: loop = mltk.TrainLoop() elif i == 3: loop = mltk.TestLoop() else: loop = None fn = lambda: tk.layers.batch_norm_full_init( layer, data_generator(), step_fn, loop=loop) tk.layers.set_train_mode(layer) if loop is not None: with loop: fn() else: fn() tk.layers.set_eval_mode(layer) if T.backend_name == 'PyTorch': self.assertEqual(layer[0].momentum, 0.125) assert_allclose(layer[0].running_mean, mean, atol=1e-4, rtol=1e-6) else: raise NotImplementedError()
def main(exp: mltk.Experiment[Config]): # prepare the data train_stream, _, test_stream = utils.get_mnist_streams( batch_size=exp.config.batch_size, test_batch_size=exp.config.test_batch_size, val_batch_size=exp.config.test_batch_size, x_range=(-1., 1.), ) tensorkit.utils.misc.print_experiment_summary(exp, train_data=train_stream, test_data=test_stream) # build the network net: T.Module = tk.layers.SequentialBuilder(train_stream.data_shapes[0]). \ set_args('res_block2d', kernel_size=3, activation=tk.layers.LeakyReLU, normalizer=tk.layers.BatchNorm2d, dropout=0.5, data_init=tk.init.StdDataInit()). \ res_block2d(16). \ res_block2d(32, stride=2). \ res_block2d(32). \ res_block2d(64, stride=2). \ res_block2d(64). \ global_avg_pool2d(). \ linear(10). \ log_softmax(). \ build() params, param_names = tensorkit.utils.misc.get_params_and_names(net) tensorkit.utils.misc.print_parameters_summary(params, param_names) print('') mltk.print_with_time('Network constructed.') # initialize the network with first few batches of train data init_x, _ = train_stream.get_arrays(max_batch=exp.config.init_batch_count) init_x = T.as_tensor(init_x) _ = net(init_x) # trigger initialization net = tk.layers.jit_compile(net) _ = net(init_x) # trigger JIT mltk.print_with_time('Network initialized') # the train, test and validate functions def train_step(x, y): logits = net(x) loss = T.nn.cross_entropy_with_logits(logits, y, reduction='mean') return {'loss': loss} def eval_step(x, y): with tk.layers.scoped_eval_mode(net), T.no_grad(): logits = net(x) acc = utils.calculate_acc(logits, y) return {'acc': acc} # build the optimizer and the train loop loop = mltk.TrainLoop(max_epoch=exp.config.max_epoch) optimizer = tk.optim.Adam(tk.layers.iter_parameters(net)) lr_scheduler = tk.optim.lr_scheduler.AnnealingLR( optimizer=optimizer, initial_lr=exp.config.initial_lr, ratio=exp.config.lr_anneal_ratio, epochs=exp.config.lr_anneal_epochs) lr_scheduler.bind(loop) # run test after every 10 epochs loop.run_after_every( lambda: loop.test().run(eval_step, test_stream), epochs=10, ) # train the model tk.layers.set_train_mode(net, True) utils.fit_model(loop=loop, optimizer=optimizer, fn=train_step, stream=train_stream) # do the final test with the best network parameters (according to validation) results = mltk.TestLoop().run(eval_step, test_stream)
def main(exp: mltk.Experiment[Config]): # prepare the data train_stream, _, test_stream = utils.get_mnist_streams( batch_size=exp.config.batch_size, test_batch_size=exp.config.test_batch_size, flatten=True, x_range=(0., 1.), use_y=False, mapper=utils.BernoulliSampler().as_mapper(), ) tensorkit.utils.misc.print_experiment_summary(exp, train_data=train_stream, test_data=test_stream) # build the network vae: VAE = VAE(train_stream.data_shapes[0][0], exp.config) params, param_names = tensorkit.utils.misc.get_params_and_names(vae) tensorkit.utils.misc.print_parameters_summary(params, param_names) print('') mltk.print_with_time('Network constructed.') # initialize the network with first few batches of train data [init_x] = train_stream.get_arrays(max_batch=exp.config.init_batch_count) vae.initialize(init_x) mltk.print_with_time('Network initialized') # define the train and evaluate functions def train_step(x): chain = vae.get_chain(x) loss = chain.vi.training.sgvb(reduction='mean') return {'loss': loss} def eval_step(x, n_z=exp.config.test_n_z): with tk.layers.scoped_eval_mode(vae), T.no_grad(): chain = vae.get_chain(x, n_z=n_z) loss = chain.vi.training.sgvb(reduction='mean') nll = -chain.vi.evaluation.is_loglikelihood(reduction='mean') return {'elbo': loss, 'nll': nll} def plot_samples(epoch=None): epoch = epoch or loop.epoch with tk.layers.scoped_eval_mode(vae), T.no_grad(): logits = vae.p(n_z=100)['x'].distribution.logits images = T.reshape( T.cast(T.clip(T.nn.sigmoid(logits) * 255., 0., 255.), dtype=T.uint8), [-1, 28, 28], ) utils.save_images_collection( images=T.to_numpy(images), filename=exp.abspath(f'plotting/{epoch}.png'), grid_size=(10, 10), ) # build the optimizer and the train loop loop = mltk.TrainLoop(max_epoch=exp.config.max_epoch) loop.add_callback(mltk.callbacks.StopOnNaN()) optimizer = tk.optim.Adam(tk.layers.iter_parameters(vae)) lr_scheduler = tk.optim.lr_scheduler.AnnealingLR( optimizer=optimizer, initial_lr=exp.config.initial_lr, ratio=exp.config.lr_anneal_ratio, epochs=exp.config.lr_anneal_epochs) lr_scheduler.bind(loop) loop.run_after_every( lambda: loop.test().run(partial(eval_step, n_z=10), test_stream), epochs=10) loop.run_after_every(plot_samples, epochs=10) # train the model tk.layers.set_train_mode(vae, True) utils.fit_model(loop=loop, optimizer=optimizer, fn=train_step, stream=train_stream) # do the final test results = mltk.TestLoop().run(eval_step, test_stream) plot_samples('final')
def main(exp: mltk.Experiment[Config]): # prepare the data train_stream, val_stream, test_stream = utils.get_mnist_streams( batch_size=exp.config.batch_size, test_batch_size=exp.config.test_batch_size, val_batch_size=exp.config.test_batch_size, val_portion=0.2, flatten=True, x_range=(-1., 1.), ) tensorkit.utils.misc.print_experiment_summary(exp, train_data=train_stream, val_data=val_stream, test_data=test_stream) # build the network net: T.Module = tk.layers.SequentialBuilder(784). \ set_args('dense', activation=tk.layers.LeakyReLU, data_init=tk.init.StdDataInit()). \ dense(500). \ dense(500). \ linear(10). \ log_softmax(). \ build() params, param_names = tensorkit.utils.misc.get_params_and_names(net) tensorkit.utils.misc.print_parameters_summary(params, param_names) print('') mltk.print_with_time('Network constructed.') # initialize the network init_x, _ = train_stream.get_arrays(max_batch=exp.config.init_batch_count) init_x = T.as_tensor(init_x) _ = net(init_x) # trigger initialization net = tk.layers.jit_compile(net) _ = net(init_x) # trigger JIT mltk.print_with_time('Network initialized') # define the train and evaluate functions def train_step(x, y): logits = net(x) loss = T.nn.cross_entropy_with_logits(logits, y, reduction='mean') return {'loss': loss} def eval_step(x, y): with tk.layers.scoped_eval_mode(net), T.no_grad(): logits = net(x) acc = utils.calculate_acc(logits, y) return {'acc': acc} # build the optimizer and the train loop loop = mltk.TrainLoop(max_epoch=exp.config.max_epoch) optimizer = tk.optim.Adam(tk.layers.iter_parameters(net)) lr_scheduler = tk.optim.lr_scheduler.AnnealingLR( optimizer=optimizer, initial_lr=exp.config.initial_lr, ratio=exp.config.lr_anneal_ratio, epochs=exp.config.lr_anneal_epochs) lr_scheduler.bind(loop) # add a callback to do early-stopping on the network parameters # according to the validation metric. loop.add_callback( mltk.callbacks.EarlyStopping( checkpoint=tk.train.Checkpoint(net=net), root_dir=exp.abspath('./checkpoint/early-stopping'), # note for `loop.validation()`, the prefix "val_" will be # automatically prepended to any metrics generated by the # `evaluate` function. metric_name='val_acc', smaller_is_better=False, )) # run validation after every 10 epochs if val_stream is not None: loop.run_after_every( lambda: loop.validation().run(eval_step, val_stream), epochs=10, ) # run test after every 10 epochs loop.run_after_every( lambda: loop.test().run(eval_step, test_stream), epochs=10, ) # train the model tk.layers.set_train_mode(net, True) utils.fit_model(loop=loop, optimizer=optimizer, fn=train_step, stream=train_stream) # do the final test with the best network parameters (according to validation) results = mltk.TestLoop().run(eval_step, test_stream)
acc = (torch.argmax(out, dim=-1) == y).to(torch.float32).mean() return {'loss': loss, 'acc': acc} def test_step(x, y): pred = predict_step(x)['y'] acc = (pred == y).to(torch.float32).mean() return {'acc': acc} def predict_step(x): return {'y': torch.argmax(model(x).detach(), dim=-1)} @train_loop.on_epoch_end.do def run_validation(): # set the model to `eval` mode at the beginning of each validation, # required by PyTorch model.eval() train_loop.validation().run(test_step, val_stream) # train the model train_loop.run(train_step, train_stream) # do final test model.eval() result = mltk.TestLoop().run(test_step, test_stream) print(f'test acc: {result["acc"]:.6g}') # run predict loop model.eval() result = mltk.PredictLoop().run(predict_step, predict_stream) print(f'predicted y: {result["y"].shape}, {result["y"]}')