mlknn_callable = lambda train_gen, get_labels_of_record_arg: mlknn_threshold.MlknnThreshold( train_gen, lambda sample, k: get_neighbours(sample, k, train_gen), k, smoothing_param, get_labels_of_record_arg, lambda x: 1, printer) elif classifier_name == 'mlknn-tensembled-tree': k = map(int, k.strip().split(',')) PRINTER("loaded k-list: " + str(k)) from mlknn import mlknn_tensembled mlknn_callable = lambda train_gen, get_labels_of_record_arg: mlknn_tensembled.MlknnTEnsembled( train_gen, lambda sample, k: get_neighbours(sample, k, train_gen), k, get_labels_of_record_arg, lambda x: 1, printer) label_mappings = (lambda x: x[:2], lambda x: x[:3], lambda x: x) from mltools.ml_hierarchical import MlHierarchical classifier = MlHierarchical(train_generator_list, mlknn_callable, label_mappings, get_labels_of_record) PRINTER("Time taken for training:" + str(start - time())) PRINTER("------------------------") PRINTER("---Testing classifier---") PRINTER("------------------------") test_generator = read_pickle(load_test_generator) labels = read_pickle(load_labels_path) classify_oracle = mc2lmc_tomka_blad from mltools.multilabel_evaluate import multilabel_evaluate_printresults PRINTER("-----------RESULTS-----------") multilabel_evaluate_printresults(lambda: test_generator, classify_oracle, classifier.__getattribute__('classify'), len(labels),
def main(train_generator_list, labels, elements_count, classifier_name, k, smoothing_param, distancematrix, test_generator): PRINTER("Finding label list...") get_labels_of_record = mc2lmc_tomka_blad find_all_labels = lambda frecords: get_labels_min_occurence(lambda: gen_lmc(frecords), 1) PRINTER("Loading distance matrix...") import sys sys.path.append(r'../') from data_io.matrix_io import fread_smatrix (rows, cols, data) = fread_smatrix(distancematrix) id2rowind, id2colind = {}, {} for ind, id in enumerate(rows): id2rowind[id] = ind for ind, id in enumerate(cols): id2colind[id] = ind #print "len(train_generator_list):",len(train_generator_list) #print "len(test_generator_list):",len(test_generator) #print "len(rows):",len(rows) #print "(rows, cols, data):", (rows, cols, data) PRINTER("Training classifier...") from time import time def printer(x): #import logging logging.info('['+classifier_name+']'+x) def distance(a, b): try: return data[id2rowind[a['an']]][id2colind[b['an']]] except: return data[id2colind[b['an']]][id2rowind[a['an']]] start = time() if classifier_name=='mlknn_basic': def get_neighbours(sample, k): return find_closest_points_sorted(sample, train_generator_list, [sample], k, distance) k = int(k) from mlknn import mlknn_basic classifier = mlknn_basic.MlknnBasic(train_generator_list, get_neighbours, k, smoothing_param, get_labels_of_record, lambda x:1, printer) elif classifier_name == 'mlknn_threshold': def get_neighbours(sample, k): return find_closest_points_sorted(sample, train_generator_list, [sample], k, distance) k = int(k) from mlknn import mlknn_threshold classifier = mlknn_threshold.MlknnThreshold(train_generator_list, get_neighbours, k, smoothing_param, get_labels_of_record, lambda x:1, printer) elif classifier_name == 'mlknn_tensembled': def get_neighbours(sample, k): return find_closest_points_sorted(sample, train_generator_list, [sample], k, distance) k = map(int, k.strip().split(',')) PRINTER("loaded k-list: "+str(k)) from mlknn import mlknn_tensembled classifier = mlknn_tensembled.MlknnTEnsembled(train_generator_list, get_neighbours, k, get_labels_of_record, lambda x:1, printer) elif classifier_name=='mlknn-basic-tree': def get_neighbours(sample, k, train_gen): return find_closest_points_sorted(sample, train_gen, [sample], k, distance) k = int(k) from mlknn import mlknn_basic mlknn_callable = lambda train_gen, get_labels_of_record_arg: mlknn_basic.MlknnBasic(train_gen, lambda sample, k: get_neighbours(sample, k, train_gen), k, smoothing_param, get_labels_of_record_arg, lambda x:1, printer) label_mappings = (lambda x: x[:2], lambda x: x[:3], lambda x: x) from mltools.ml_hierarchical import MlHierarchical classifier = MlHierarchical(train_generator_list, mlknn_callable, label_mappings, get_labels_of_record) elif classifier_name == 'mlknn-threshold-tree': def get_neighbours(sample, k, train_gen): return find_closest_points_sorted(sample, train_gen, [sample], k, distance) k = int(k) from mlknn import mlknn_threshold mlknn_callable = lambda train_gen, get_labels_of_record_arg: mlknn_threshold.MlknnThreshold(train_gen, lambda sample, k: get_neighbours(sample, k, train_gen), k, smoothing_param, get_labels_of_record_arg, lambda x:1, printer) label_mappings = (lambda x: x[:2], lambda x: x[:3], lambda x: x) from mltools.ml_hierarchical import MlHierarchical classifier = MlHierarchical(train_generator_list, mlknn_callable, label_mappings, get_labels_of_record) elif classifier_name == 'mlknn-tensembled-tree': def get_neighbours(sample, k, train_gen): return find_closest_points_sorted(sample, train_gen, [sample], k, distance) k = map(int, k.strip().split(',')) PRINTER("loaded k-list: "+str(k)) from mlknn import mlknn_tensembled mlknn_callable = lambda train_gen, get_labels_of_record_arg: mlknn_tensembled.MlknnTEnsembled(train_gen, lambda sample, k: get_neighbours(sample, k, train_gen), k, get_labels_of_record_arg, lambda x:1, printer) label_mappings = (lambda x: x[:2], lambda x: x[:3], lambda x: x) from mltools.ml_hierarchical import MlHierarchical classifier = MlHierarchical(train_generator_list, mlknn_callable, label_mappings, get_labels_of_record) PRINTER("Time taken for training:"+str(start-time())) PRINTER("------------------------") PRINTER("---Testing classifier---") PRINTER("------------------------") classify_oracle = mc2lmc_tomka_blad from mltools.multilabel_evaluate import multilabel_evaluate, multilabel_evaluate_printresults accuracy, precision, recall, hammingloss, subset01loss, fmeasure = multilabel_evaluate(lambda: test_generator, classify_oracle, classifier.__getattribute__('classify'), len(labels), [('full label', lambda x: x), ('half label', lambda x: x[:3]), ('low label', lambda x: x[:2])]) PRINTER("-----------RESULTS-----------") multilabel_evaluate_printresults(accuracy, precision, recall, hammingloss, subset01loss, fmeasure, PRINTER) return accuracy, precision, recall, hammingloss, subset01loss, fmeasure
elements_count = read_pickle(load_elements_count_path) train_generator = lambda: train_generator_list #train mlknn: PRINTER("Training Distance...") zbldistance = JaccardDistance(train_generator, elements_count - int(elements_count / 10), distancetrainingsteps) get_labels_of_record = mc2lmc_tomka_blad find_all_labels = lambda frecords: get_labels_min_occurence( lambda: gen_lmc(frecords), 1) mlknn_callable = lambda train_gen: MlKnn( train_gen, zbldistance, find_closest_points, k, smoothingparam, find_all_labels, get_labels_of_record) label_mappings = (lambda x: x[:2], lambda x: x[:3], lambda x: x) record_mappings = (lambda x: gen_1record_prefixed(x, 2), lambda x: gen_1record_prefixed(x, 3), lambda x: x) PRINTER("Training hierarchical mlknn...") from time import time start = time() hierarhical_mlknn = MlHierarchical(train_generator, mlknn_callable, label_mappings, record_mappings) PRINTER("time taken for training:" + str(start - time())) from tools.pickle_tools import save_pickle save_pickle(hierarhical_mlknn, save_classifier_path)
from mlknn import mlknn_threshold mlknn_callable = lambda train_gen, get_labels_of_record_arg: mlknn_threshold.MlknnThreshold(train_gen, lambda sample, k: get_neighbours(sample, k, train_gen), k, smoothing_param, get_labels_of_record_arg, lambda x:1, printer) elif classifier_name == 'mlknn-tensembled-tree': k = map(int, k.strip().split(',')) PRINTER("loaded k-list: "+str(k)) from mlknn import mlknn_tensembled mlknn_callable = lambda train_gen, get_labels_of_record_arg: mlknn_tensembled.MlknnTEnsembled(train_gen, lambda sample, k: get_neighbours(sample, k, train_gen), k, get_labels_of_record_arg, lambda x:1, printer) label_mappings = (lambda x: x[:2], lambda x: x[:3], lambda x: x) from mltools.ml_hierarchical import MlHierarchical classifier = MlHierarchical(train_generator_list, mlknn_callable, label_mappings, get_labels_of_record) PRINTER("Time taken for training:"+str(start-time())) PRINTER("------------------------") PRINTER("---Testing classifier---") PRINTER("------------------------") test_generator = read_pickle(load_test_generator) labels = read_pickle(load_labels_path) classify_oracle = mc2lmc_tomka_blad from mltools.multilabel_evaluate import multilabel_evaluate_printresults PRINTER("-----------RESULTS-----------") multilabel_evaluate_printresults(lambda: test_generator, classify_oracle, classifier.__getattribute__('classify'), len(labels), [('full label', lambda x: x), ('half label', lambda x: x[:3]), ('low label', lambda x: x[:2])], labels)
distancetrainingsteps) else: from mlknn.txt_cosine_distance import TxtCosineDistance zbldistance = TxtCosineDistance(distancetype) get_labels_of_record = mc2lmc_tomka_blad mlknn_callable = lambda train_gen, get_labels_of_record_arg: MlKnnFractional( train_gen, zbldistance, find_closest_points, k, get_labels_of_record_arg) label_mappings = (lambda x: x[:2], lambda x: x[:3], lambda x: x) PRINTER("Training hierarchical mlknn...") from time import time start = time() hierarhical_mlknn = MlHierarchical(train_generator, mlknn_callable, label_mappings, get_labels_of_record) PRINTER("time taken for training:" + str(start - time())) PRINTER("Testing hierarchical mlknn fractional...") test_generator = read_pickle(load_test_generator) labels = read_pickle(load_labels_path) #print "Finding out if the ML-hierarchical has internal data..." #check_internal_data(hierarhical_mlknn) classify_oracle = mc2lmc_tomka_blad #print "----------------------------------------------------" #print "Hierachical MLKNN:" from mltools.multilabel_evaluate import multilabel_evaluate_printresults PRINTER("-----------RESULTS-----------") multilabel_evaluate_printresults(
from mlknn.jaccard_distance import JaccardDistance zbldistance = JaccardDistance(train_generator, elements_count-int(elements_count/10), distancetrainingsteps) else: from mlknn.txt_cosine_distance import TxtCosineDistance zbldistance = TxtCosineDistance(distancetype) get_labels_of_record = mc2lmc_tomka_blad mlknn_callable = lambda train_gen, get_labels_of_record_arg: MlKnn(train_gen, zbldistance, find_closest_points, k, smoothingparam, get_labels_of_record_arg) label_mappings = (lambda x: x[:2], lambda x: x[:3], lambda x: x) PRINTER("Training hierarchical mlknn...") from time import time start = time() hierarhical_mlknn = MlHierarchical(train_generator, mlknn_callable, label_mappings, get_labels_of_record) PRINTER("time taken for training:"+str(start-time())) PRINTER("Testing hierarchical mlknn...") test_generator = read_pickle(load_test_generator) labels = read_pickle(load_labels_path) #print "Finding out if the ML-hierarchical has internal data..." #check_internal_data(hierarhical_mlknn) classify_oracle = mc2lmc_tomka_blad #print "----------------------------------------------------" #print "Hierachical MLKNN:" from mltools.multilabel_evaluate import multilabel_evaluate_printresults PRINTER("-----------RESULTS-----------") multilabel_evaluate_printresults(lambda: test_generator, classify_oracle, hierarhical_mlknn.__getattribute__('classify'), len(labels),