コード例 #1
0
def alternative_evaluation(input_path, output_path, n, log_step=1):
    device = torch.device(
        'cuda') if torch.cuda.is_available() else torch.device('cpu')
    log = section_logger(0)

    dataset = AD20kFasterRCNN(
        '/home/dani/Documentos/Proyectos/Doctorado/Datasets/ADE20K/ADE20K_2016_07_26/ade20ktrain.csv',
        '/home/dani/Documentos/Proyectos/Doctorado/Datasets/ADE20K/ADE20K_2016_07_26/images/training',
        transforms=get_transform(train=True))

    dataset_test = AD20kFasterRCNN(
        '/home/dani/Documentos/Proyectos/Doctorado/Datasets/ADE20K/ADE20K_2016_07_26/ade20ktest.csv',
        '/home/dani/Documentos/Proyectos/Doctorado/Datasets/ADE20K/ADE20K_2016_07_26/images/validation',
        transforms=get_transform(train=False),
        labels=dataset.labels,
        is_test=True)

    nlp = spacy.load("en_core_web_md")

    num_classes = len(dataset.labels)
    model = load_frcnn(input_path, num_classes, device)

    num_examples = 0

    results = []

    metaparameters = generate_metaparameters(10,
                                             METAPARAMETER_DEF,
                                             static=False)

    for id, objects in enumerate(dataset_test):
        image = objects[0].to(device)
        predictions = model([image])

        if id % log_step == 0:
            log("Processing image [{}] with {} predictions and {} boxes".
                format(id, len(predictions[0]['boxes']),
                       len(objects[1]['boxes'])))

        for meta_id in range(len(metaparameters['iou_threshold'])):

            iou_threshold = metaparameters['iou_threshold'][meta_id]
            nlp_threshold = metaparameters['iou_threshold'][meta_id]
            wnt_threshold = metaparameters['iou_threshold'][meta_id]

            partial_results = nlp_evaluation(id,
                                             objects,
                                             predictions[0],
                                             dataset.labels,
                                             nlp,
                                             iou_threshold=iou_threshold,
                                             nlp_threshold=nlp_threshold,
                                             wnt_threshold=wnt_threshold)

            results.append(partial_results)

        if num_examples < n:
            num_examples += 1
        else:
            break

    results_df = pd.concat(results)
    results_df.to_csv(os.path.join(output_path, 'FRCNN_ad20k_evaluations.csv'))
コード例 #2
0
 def test_to_list(self):
     results = mt.generate_metaparameters(15, INTEGER_DEF_1, static=True)
     result_list = mt.to_list(results)
     self.assertEqual(len(result_list), 15)
     self.assertEqual(list(result_list[0].keys())[0], 'Integer1')
コード例 #3
0
 def test_static_generation(self):
     results = mt.generate_metaparameters(15, INTEGER_DEF_1, static=True)
     self.assertEqual(len(results['Integer1']), 15)
     self.assertEqual(sum([e == 5 for e in results['Integer1']]), 15)
コード例 #4
0
 def test_generate_multiple_numbers(self):
     results = mt.generate_metaparameters(10, SMALL_FLOAT_DEF_1)
     self.assertEqual(len(results['SmallFloat1']), 10)
コード例 #5
0
 def test_generate_smallfloats(self):
     results = mt.generate_metaparameters(1, SMALL_FLOAT_DEF_1)
     self.assertEqual(len(results['SmallFloat1']), 1)
     self.assertGreater(results['SmallFloat1'][0], np.power(10, -5.))
     self.assertLess(results['SmallFloat1'][0], np.power(10, -1.))
コード例 #6
0
 def test_generate_integers(self):
     results = mt.generate_metaparameters(1, INTEGER_DEF_1)
     self.assertEqual(len(results['Integer1']), 1)
     self.assertGreater(results['Integer1'][0], 10)
     self.assertLess(results['Integer1'][0], 100)