def call(self, dct): ''' closure ''' sc = decode_StateCollection(dct) # if self.filter_non_hired and sc.hired != True: # self.num_states.append(0) # else: self.num_states.append(len(sc.states)) self.count += 1 return None
def call(self, dct): """ Closure. """ (trans1, paths_dct, trans2, sc_dct) = dct num_paths = len(paths_dct) vector_size = self.num_path_features+self.num_state_features empty_paths = [0 for _ in range(self.num_path_features)] empty_states = [0 for _ in range(self.num_state_features)] feats_paths = np.zeros((num_paths, vector_size)) for i in range(num_paths): path_dct = paths_dct[i] path = decode_Path(path_dct) phi = np.array(self.path_features(path) + empty_states) feats_paths[i, ::] = phi sc = decode_StateCollection(sc_dct) num_states = len(sc.states) feats_states = np.zeros((num_states, vector_size)) for j in range(len(sc.states)): phi = np.array(empty_paths + self.state_features(sc, j)) feats_states[j, ::] = phi if self.count == 0: self.feature_trajs.append(feats_states) else: # Debugging checks num_previous_states = len(self.feature_trajs[-1]) for (u, v) in trans1: assert u >= 0 assert v >= 0 assert u < num_previous_states, ('trans1', (u, v), u) assert v < num_paths, ('trans1', (u, v), v) for (u, v) in trans2: assert u >= 0 assert v >= 0 assert u < num_paths, ('trans2', (u, v), u) assert v < num_states, ('trans2', (u, v), v) self.feature_trajs.append(trans1) self.feature_trajs.append(feats_paths) self.feature_trajs.append(trans2) self.feature_trajs.append(feats_states) self.count += 1 return None
def call(self, dct): """ Calling function, to create a closure. """ (trans1, paths_dct, trans2, sc_dct) = dct sc = decode_StateCollection(sc_dct) num_paths = len(paths_dct) num_states = len(sc.states) paths = [decode_Path(path_dct) for path_dct in paths_dct] # Due to a bug in the way the closures are used, we nned # to make sure we are not in the first element. # Make a dictionary of previous->paths dic1 = collections.defaultdict(list) for (u, v) in trans1: # Debugging: make sure the path corresponds to the previous point assert u >= 0 assert v >= 0 assert v < num_paths if self.previous_sc: assert u < len(self.previous_sc.states) # Make sure it is proper connectivity state = self.previous_sc.states[u] path = paths[v] assert state.link_id == path.links[0] assert state.link_id == path.start.link_id assert state.offset == path.start.offset dic1[u].append(v) dic2 = collections.defaultdict(list) for (v, u) in trans2: assert u >= 0 assert v >= 0 assert v < num_paths assert u < num_states # Check connectivity state = sc.states[u] path = paths[v] if state.link_id != path.links[-1]: print sc.states print path assert state.link_id == path.links[-1], \ (path.links[-1], state.link_id, v, u, state, path) assert state.link_id == path.end.link_id, (state.link_id, \ path.end.link_id) assert state.offset == path.end.offset, (state.offset, path.end.offset) dic2[v].append(u) reachable_paths = set(reduce(lambda l1, l2:l1+l2, \ [dic1[u] for u in self.reachable], [])) if not reachable_paths: print("No reachable paths") reachable_states = set(reduce(lambda l1, l2:l1+l2, \ [dic2[u] for u in reachable_paths], [])) self.num_reachable.append(len(reachable_states)) if not reachable_states: print 'break at %i' % self.count self.reachable = range(num_states) self.flow_units.append([]) else: self.reachable = reachable_states self.flow_units[-1].append(self.count) self.count += 1 self.previous_sc = sc return None
def call(self, dct): """ Closure. """ # All the hard elements are already coded in mapping. # Here is how the mapping procedure works in high frequency: # At first, a new point is added to the beginning, with empty paths. # When a new point (with its paths) arrives, two cases: # We were right after the start point, then we simply add # the path and the point. Otherwise, we decimate paths and points, # and we merge the paths together. (trans1, paths_dct, trans2, sc_dct) = dct paths = [decode_Path(path_dct) for path_dct in paths_dct] del paths_dct sc = decode_StateCollection(sc_dct) del sc_dct # The index of sc point_idx = 2 * self.count # The index of the paths path_idx = 2 * self.count - 1 self.count += 1 (new_decim_sc, new_end_mapping) = \ decimate_point(sc, self.probas[point_idx], self.viterbi_idxs[point_idx]) new_most_likely_sc_idx = None if point_idx >= 0: assert self.viterbi_idxs[point_idx] in new_end_mapping, \ (point_idx, new_end_mapping) new_most_likely_sc_idx = new_end_mapping[self.viterbi_idxs[point_idx]] # First element?? if not self.start_point: self.start_point = new_decim_sc self.start_mapping = new_end_mapping assert new_most_likely_sc_idx is not None self.most_likely_indexes.append(new_most_likely_sc_idx) return ([], [], [], encode_StateCollection(self.start_point)) # Try to add a new elment: if self.paths is None: assert self.start_mapping is not None assert self.start_point is not None # Start a new set of paths (new_trans1, decimated_paths, new_trans2, paths_mapping) = \ decimate_path_simple(self.start_mapping, trans1, paths, \ trans2, new_end_mapping) assert self.viterbi_idxs[point_idx] in new_end_mapping assert self.viterbi_idxs[path_idx] in paths_mapping assert (self.start_mapping[self.viterbi_idxs[path_idx-1]], \ paths_mapping[self.viterbi_idxs[path_idx]]) in new_trans1 assert (paths_mapping[self.viterbi_idxs[path_idx]], \ new_end_mapping[self.viterbi_idxs[point_idx]]) in new_trans2 self.end_point = new_decim_sc self.end_mapping = new_end_mapping self.start_trans = new_trans1 self.paths = decimated_paths assert self.paths, self.paths self.best_idx = paths_mapping[self.viterbi_idxs[path_idx]] self.end_trans = new_trans2 else: assert self.start_mapping is not None assert self.start_point is not None assert self.start_trans is not None assert self.end_trans is not None assert self.paths is not None # First decimate the paths (new_trans1, decimated_paths, new_trans2, paths_mapping) = \ decimate_path_simple(self.end_mapping, trans1, paths, trans2, \ new_end_mapping) assert self.viterbi_idxs[path_idx] in paths_mapping assert self.viterbi_idxs[path_idx-1] in self.end_mapping assert (self.end_mapping[self.viterbi_idxs[path_idx-1]], \ paths_mapping[self.viterbi_idxs[path_idx]]) in new_trans1 assert (paths_mapping[self.viterbi_idxs[path_idx]], \ new_end_mapping[self.viterbi_idxs[point_idx]]) in new_trans2 best_idx2 = paths_mapping[self.viterbi_idxs[path_idx]] # Merge the paths together (merged_trans1, merged_paths, merged_trans2, merged_best_idx) = \ merge_path_sequence(self.start_trans, self.paths, self.end_trans, \ new_trans1, decimated_paths, new_trans2, \ self.best_idx, best_idx2) self.end_point = new_decim_sc self.end_mapping = new_end_mapping self.start_trans = merged_trans1 self.paths = merged_paths self.best_idx = merged_best_idx self.end_trans = merged_trans2 # Time to send a new element to the output and restart? if (self.count-1) % self.decimation_factor == 0: assert self.paths assert self.end_trans assert self.start_trans assert self.best_idx is not None encoded_paths = [encode_Path(path) for path in self.paths] print len(encoded_paths), " paths", len(self.end_point.states), " states" result = (self.start_trans, encoded_paths, \ self.end_trans, encode_StateCollection(self.end_point)) # Adding the most likely index of the path and of the next point. self.most_likely_indexes.append(self.best_idx) assert new_most_likely_sc_idx is not None self.most_likely_indexes.append(new_most_likely_sc_idx) # Restart computations: self.start_point = self.end_point self.start_mapping = self.end_mapping del self.paths self.start_trans = None self.end_trans = None self.paths = None self.best_idx = None return result # Nothing to return for this input, continuing. return None
def call(self, dct): """ Closure. """ (_, paths_dct, _, sc_dct) = dct sc = decode_StateCollection(sc_dct) del sc_dct # The index of sc point_idx = 2 * self.count # The index of the paths path_idx = 2 * self.count - 1 self.count += 1 new_most_likely_sc_idx = self.viterbi_idxs[point_idx] # First element?? if not self.start_point: self.start_point = sc assert new_most_likely_sc_idx is not None self.most_likely_indexes.append(new_most_likely_sc_idx) return ([], [], [], encode_StateCollection(self.start_point)) # Only decode the most likely path, we do not need the other paths. new_best_path = decode_Path(paths_dct[self.viterbi_idxs[path_idx]]) del paths_dct # Try to add a new element: # All this code is much more complicated than it should be now. if self.best_path is None: assert self.start_point is not None self.best_path = new_best_path else: assert self.start_point is not None self.best_path = merge_path(self.best_path, new_best_path) assert self.best_path.start in self.start_point.states assert self.best_path.end in sc.states # Time to send a new element to the output and restart? if (self.count-1) % self.decimation_factor == 0: # Time to find all the other paths (other_trans1, other_paths, other_trans2) = \ self.path_builder.getPathsBetweenCollections(self.start_point, sc) # If we have the first path already in, no need to integrate it: try: best_path_idx = other_paths.index(self.best_path) new_trans1 = other_trans1 new_paths = other_paths new_trans2 = other_trans2 except ValueError: # We need to append it: best_path_idx = len(other_paths) prev_best_idx = self.most_likely_indexes[-1] new_trans1 = other_trans1 + [(prev_best_idx, best_path_idx)] new_paths = other_paths + [self.best_path] new_trans2 = other_trans2 + [(best_path_idx, new_most_likely_sc_idx)] encoded_paths = [encode_Path(path) for path in new_paths] print len(encoded_paths), " paths", len(sc.states), " states", if len(other_paths) != len(new_paths): print '(forced insertion)' else: print '' result = (new_trans1, encoded_paths, \ new_trans2, encode_StateCollection(sc)) # Adding the most likely index of the path and of the next point. self.most_likely_indexes.append(best_path_idx) assert new_most_likely_sc_idx is not None self.most_likely_indexes.append(new_most_likely_sc_idx) # Restart computations: self.start_point = sc self.best_path = None return result # Nothing to return for this input, continuing. return None
def call(self, dct): """ Closure. """ # All the hard elements are already coded in mapping. # Here is how the mapping procedure works in high frequency: # At first, a new point is added to the beginning, with empty paths. # When a new point (with its paths) arrives, two cases: # We were right after the start point, then we simply add # the path and the point. Otherwise, we decimate paths and points, # and we merge the paths together. (trans1, paths_dct, trans2, sc_dct) = dct paths = [decode_Path(path_dct) for path_dct in paths_dct] del paths_dct sc = decode_StateCollection(sc_dct) del sc_dct # The index of sc point_idx = 2 * self.count # The index of the paths path_idx = 2 * self.count - 1 self.count += 1 (new_decim_sc, new_end_mapping) = \ decimate_point(sc, self.probas[point_idx], self.viterbi_idxs[point_idx]) new_most_likely_sc_idx = None if point_idx >= 0: assert self.viterbi_idxs[point_idx] in new_end_mapping, \ (point_idx, new_end_mapping) new_most_likely_sc_idx = new_end_mapping[ self.viterbi_idxs[point_idx]] # First element?? if not self.start_point: self.start_point = new_decim_sc self.start_mapping = new_end_mapping assert new_most_likely_sc_idx is not None self.most_likely_indexes.append(new_most_likely_sc_idx) return ([], [], [], encode_StateCollection(self.start_point)) # Try to add a new elment: if self.paths is None: assert self.start_mapping is not None assert self.start_point is not None # Start a new set of paths (new_trans1, decimated_paths, new_trans2, paths_mapping) = \ decimate_path_simple(self.start_mapping, trans1, paths, \ trans2, new_end_mapping) assert self.viterbi_idxs[point_idx] in new_end_mapping assert self.viterbi_idxs[path_idx] in paths_mapping assert (self.start_mapping[self.viterbi_idxs[path_idx-1]], \ paths_mapping[self.viterbi_idxs[path_idx]]) in new_trans1 assert (paths_mapping[self.viterbi_idxs[path_idx]], \ new_end_mapping[self.viterbi_idxs[point_idx]]) in new_trans2 self.end_point = new_decim_sc self.end_mapping = new_end_mapping self.start_trans = new_trans1 self.paths = decimated_paths assert self.paths, self.paths self.best_idx = paths_mapping[self.viterbi_idxs[path_idx]] self.end_trans = new_trans2 else: assert self.start_mapping is not None assert self.start_point is not None assert self.start_trans is not None assert self.end_trans is not None assert self.paths is not None # First decimate the paths (new_trans1, decimated_paths, new_trans2, paths_mapping) = \ decimate_path_simple(self.end_mapping, trans1, paths, trans2, \ new_end_mapping) assert self.viterbi_idxs[path_idx] in paths_mapping assert self.viterbi_idxs[path_idx - 1] in self.end_mapping assert (self.end_mapping[self.viterbi_idxs[path_idx-1]], \ paths_mapping[self.viterbi_idxs[path_idx]]) in new_trans1 assert (paths_mapping[self.viterbi_idxs[path_idx]], \ new_end_mapping[self.viterbi_idxs[point_idx]]) in new_trans2 best_idx2 = paths_mapping[self.viterbi_idxs[path_idx]] # Merge the paths together (merged_trans1, merged_paths, merged_trans2, merged_best_idx) = \ merge_path_sequence(self.start_trans, self.paths, self.end_trans, \ new_trans1, decimated_paths, new_trans2, \ self.best_idx, best_idx2) self.end_point = new_decim_sc self.end_mapping = new_end_mapping self.start_trans = merged_trans1 self.paths = merged_paths self.best_idx = merged_best_idx self.end_trans = merged_trans2 # Time to send a new element to the output and restart? if (self.count - 1) % self.decimation_factor == 0: assert self.paths assert self.end_trans assert self.start_trans assert self.best_idx is not None encoded_paths = [encode_Path(path) for path in self.paths] print len(encoded_paths), " paths", len( self.end_point.states), " states" result = (self.start_trans, encoded_paths, \ self.end_trans, encode_StateCollection(self.end_point)) # Adding the most likely index of the path and of the next point. self.most_likely_indexes.append(self.best_idx) assert new_most_likely_sc_idx is not None self.most_likely_indexes.append(new_most_likely_sc_idx) # Restart computations: self.start_point = self.end_point self.start_mapping = self.end_mapping del self.paths self.start_trans = None self.end_trans = None self.paths = None self.best_idx = None return result # Nothing to return for this input, continuing. return None
def call(self, dct): """ Closure. """ (_, paths_dct, _, sc_dct) = dct sc = decode_StateCollection(sc_dct) del sc_dct # The index of sc point_idx = 2 * self.count # The index of the paths path_idx = 2 * self.count - 1 self.count += 1 new_most_likely_sc_idx = self.viterbi_idxs[point_idx] # First element?? if not self.start_point: self.start_point = sc assert new_most_likely_sc_idx is not None self.most_likely_indexes.append(new_most_likely_sc_idx) return ([], [], [], encode_StateCollection(self.start_point)) # Only decode the most likely path, we do not need the other paths. new_best_path = decode_Path(paths_dct[self.viterbi_idxs[path_idx]]) del paths_dct # Try to add a new element: # All this code is much more complicated than it should be now. if self.best_path is None: assert self.start_point is not None self.best_path = new_best_path else: assert self.start_point is not None self.best_path = merge_path(self.best_path, new_best_path) assert self.best_path.start in self.start_point.states assert self.best_path.end in sc.states # Time to send a new element to the output and restart? if (self.count - 1) % self.decimation_factor == 0: # Time to find all the other paths (other_trans1, other_paths, other_trans2) = \ self.path_builder.getPathsBetweenCollections(self.start_point, sc) # If we have the first path already in, no need to integrate it: try: best_path_idx = other_paths.index(self.best_path) new_trans1 = other_trans1 new_paths = other_paths new_trans2 = other_trans2 except ValueError: # We need to append it: best_path_idx = len(other_paths) prev_best_idx = self.most_likely_indexes[-1] new_trans1 = other_trans1 + [(prev_best_idx, best_path_idx)] new_paths = other_paths + [self.best_path] new_trans2 = other_trans2 + [ (best_path_idx, new_most_likely_sc_idx) ] encoded_paths = [encode_Path(path) for path in new_paths] print len(encoded_paths), " paths", len(sc.states), " states", if len(other_paths) != len(new_paths): print '(forced insertion)' else: print '' result = (new_trans1, encoded_paths, \ new_trans2, encode_StateCollection(sc)) # Adding the most likely index of the path and of the next point. self.most_likely_indexes.append(best_path_idx) assert new_most_likely_sc_idx is not None self.most_likely_indexes.append(new_most_likely_sc_idx) # Restart computations: self.start_point = sc self.best_path = None return result # Nothing to return for this input, continuing. return None