def __init__(self, arch='tiny', img_size=224, patch_size=4, in_channels=3, window_size=7, drop_rate=0., drop_path_rate=0.1, out_indices=(3, ), use_abs_pos_embed=False, interpolate_mode='bicubic', with_cp=False, frozen_stages=-1, norm_eval=False, pad_small_map=False, norm_cfg=dict(type='LN'), stage_cfgs=dict(), patch_cfg=dict(), init_cfg=None): super(SwinTransformer, self).__init__(init_cfg=init_cfg) if isinstance(arch, str): arch = arch.lower() assert arch in set(self.arch_zoo), \ f'Arch {arch} is not in default archs {set(self.arch_zoo)}' self.arch_settings = self.arch_zoo[arch] else: essential_keys = {'embed_dims', 'depths', 'num_heads'} assert isinstance(arch, dict) and set(arch) == essential_keys, \ f'Custom arch needs a dict with keys {essential_keys}' self.arch_settings = arch self.embed_dims = self.arch_settings['embed_dims'] self.depths = self.arch_settings['depths'] self.num_heads = self.arch_settings['num_heads'] self.num_layers = len(self.depths) self.out_indices = out_indices self.use_abs_pos_embed = use_abs_pos_embed self.interpolate_mode = interpolate_mode self.frozen_stages = frozen_stages _patch_cfg = dict( in_channels=in_channels, input_size=img_size, embed_dims=self.embed_dims, conv_type='Conv2d', kernel_size=patch_size, stride=patch_size, norm_cfg=dict(type='LN'), ) _patch_cfg.update(patch_cfg) self.patch_embed = PatchEmbed(**_patch_cfg) self.patch_resolution = self.patch_embed.init_out_size if self.use_abs_pos_embed: num_patches = self.patch_resolution[0] * self.patch_resolution[1] self.absolute_pos_embed = nn.Parameter( torch.zeros(1, num_patches, self.embed_dims)) self._register_load_state_dict_pre_hook( self._prepare_abs_pos_embed) self.drop_after_pos = nn.Dropout(p=drop_rate) self.norm_eval = norm_eval # stochastic depth total_depth = sum(self.depths) dpr = [ x.item() for x in torch.linspace(0, drop_path_rate, total_depth) ] # stochastic depth decay rule self.stages = ModuleList() embed_dims = [self.embed_dims] for i, (depth, num_heads) in enumerate(zip(self.depths, self.num_heads)): if isinstance(stage_cfgs, Sequence): stage_cfg = stage_cfgs[i] else: stage_cfg = deepcopy(stage_cfgs) downsample = True if i < self.num_layers - 1 else False _stage_cfg = { 'embed_dims': embed_dims[-1], 'depth': depth, 'num_heads': num_heads, 'window_size': window_size, 'downsample': downsample, 'drop_paths': dpr[:depth], 'with_cp': with_cp, 'pad_small_map': pad_small_map, **stage_cfg } stage = SwinBlockSequence(**_stage_cfg) self.stages.append(stage) dpr = dpr[depth:] embed_dims.append(stage.out_channels) for i in out_indices: if norm_cfg is not None: norm_layer = build_norm_layer(norm_cfg, embed_dims[i + 1])[1] else: norm_layer = nn.Identity() self.add_module(f'norm{i}', norm_layer)
class SwinTransformer(BaseBackbone): """Swin Transformer. A PyTorch implement of : `Swin Transformer: Hierarchical Vision Transformer using Shifted Windows <https://arxiv.org/abs/2103.14030>`_ Inspiration from https://github.com/microsoft/Swin-Transformer Args: arch (str | dict): Swin Transformer architecture. If use string, choose from 'tiny', 'small', 'base' and 'large'. If use dict, it should have below keys: - **embed_dims** (int): The dimensions of embedding. - **depths** (List[int]): The number of blocks in each stage. - **num_heads** (List[int]): The number of heads in attention modules of each stage. Defaults to 'tiny'. img_size (int | tuple): The expected input image shape. Because we support dynamic input shape, just set the argument to the most common input image shape. Defaults to 224. patch_size (int | tuple): The patch size in patch embedding. Defaults to 4. in_channels (int): The num of input channels. Defaults to 3. window_size (int): The height and width of the window. Defaults to 7. drop_rate (float): Dropout rate after embedding. Defaults to 0. drop_path_rate (float): Stochastic depth rate. Defaults to 0.1. use_abs_pos_embed (bool): If True, add absolute position embedding to the patch embedding. Defaults to False. interpolate_mode (str): Select the interpolate mode for absolute position embeding vector resize. Defaults to "bicubic". with_cp (bool): Use checkpoint or not. Using checkpoint will save some memory while slowing down the training speed. Defaults to False. frozen_stages (int): Stages to be frozen (stop grad and set eval mode). -1 means not freezing any parameters. Defaults to -1. norm_eval (bool): Whether to set norm layers to eval mode, namely, freeze running stats (mean and var). Note: Effect on Batch Norm and its variants only. Defaults to False. pad_small_map (bool): If True, pad the small feature map to the window size, which is common used in detection and segmentation. If False, avoid shifting window and shrink the window size to the size of feature map, which is common used in classification. Defaults to False. norm_cfg (dict): Config dict for normalization layer for all output features. Defaults to ``dict(type='LN')`` stage_cfgs (Sequence[dict] | dict): Extra config dict for each stage. Defaults to an empty dict. patch_cfg (dict): Extra config dict for patch embedding. Defaults to an empty dict. init_cfg (dict, optional): The Config for initialization. Defaults to None. Examples: >>> from mmcls.models import SwinTransformer >>> import torch >>> extra_config = dict( >>> arch='tiny', >>> stage_cfgs=dict(downsample_cfg={'kernel_size': 3, >>> 'expansion_ratio': 3})) >>> self = SwinTransformer(**extra_config) >>> inputs = torch.rand(1, 3, 224, 224) >>> output = self.forward(inputs) >>> print(output.shape) (1, 2592, 4) """ arch_zoo = { **dict.fromkeys(['t', 'tiny'], {'embed_dims': 96, 'depths': [2, 2, 6, 2], 'num_heads': [3, 6, 12, 24]}), **dict.fromkeys(['s', 'small'], {'embed_dims': 96, 'depths': [2, 2, 18, 2], 'num_heads': [3, 6, 12, 24]}), **dict.fromkeys(['b', 'base'], {'embed_dims': 128, 'depths': [2, 2, 18, 2], 'num_heads': [4, 8, 16, 32]}), **dict.fromkeys(['l', 'large'], {'embed_dims': 192, 'depths': [2, 2, 18, 2], 'num_heads': [6, 12, 24, 48]}), } # yapf: disable _version = 3 num_extra_tokens = 0 def __init__(self, arch='tiny', img_size=224, patch_size=4, in_channels=3, window_size=7, drop_rate=0., drop_path_rate=0.1, out_indices=(3, ), use_abs_pos_embed=False, interpolate_mode='bicubic', with_cp=False, frozen_stages=-1, norm_eval=False, pad_small_map=False, norm_cfg=dict(type='LN'), stage_cfgs=dict(), patch_cfg=dict(), init_cfg=None): super(SwinTransformer, self).__init__(init_cfg=init_cfg) if isinstance(arch, str): arch = arch.lower() assert arch in set(self.arch_zoo), \ f'Arch {arch} is not in default archs {set(self.arch_zoo)}' self.arch_settings = self.arch_zoo[arch] else: essential_keys = {'embed_dims', 'depths', 'num_heads'} assert isinstance(arch, dict) and set(arch) == essential_keys, \ f'Custom arch needs a dict with keys {essential_keys}' self.arch_settings = arch self.embed_dims = self.arch_settings['embed_dims'] self.depths = self.arch_settings['depths'] self.num_heads = self.arch_settings['num_heads'] self.num_layers = len(self.depths) self.out_indices = out_indices self.use_abs_pos_embed = use_abs_pos_embed self.interpolate_mode = interpolate_mode self.frozen_stages = frozen_stages _patch_cfg = dict( in_channels=in_channels, input_size=img_size, embed_dims=self.embed_dims, conv_type='Conv2d', kernel_size=patch_size, stride=patch_size, norm_cfg=dict(type='LN'), ) _patch_cfg.update(patch_cfg) self.patch_embed = PatchEmbed(**_patch_cfg) self.patch_resolution = self.patch_embed.init_out_size if self.use_abs_pos_embed: num_patches = self.patch_resolution[0] * self.patch_resolution[1] self.absolute_pos_embed = nn.Parameter( torch.zeros(1, num_patches, self.embed_dims)) self._register_load_state_dict_pre_hook( self._prepare_abs_pos_embed) self.drop_after_pos = nn.Dropout(p=drop_rate) self.norm_eval = norm_eval # stochastic depth total_depth = sum(self.depths) dpr = [ x.item() for x in torch.linspace(0, drop_path_rate, total_depth) ] # stochastic depth decay rule self.stages = ModuleList() embed_dims = [self.embed_dims] for i, (depth, num_heads) in enumerate(zip(self.depths, self.num_heads)): if isinstance(stage_cfgs, Sequence): stage_cfg = stage_cfgs[i] else: stage_cfg = deepcopy(stage_cfgs) downsample = True if i < self.num_layers - 1 else False _stage_cfg = { 'embed_dims': embed_dims[-1], 'depth': depth, 'num_heads': num_heads, 'window_size': window_size, 'downsample': downsample, 'drop_paths': dpr[:depth], 'with_cp': with_cp, 'pad_small_map': pad_small_map, **stage_cfg } stage = SwinBlockSequence(**_stage_cfg) self.stages.append(stage) dpr = dpr[depth:] embed_dims.append(stage.out_channels) for i in out_indices: if norm_cfg is not None: norm_layer = build_norm_layer(norm_cfg, embed_dims[i + 1])[1] else: norm_layer = nn.Identity() self.add_module(f'norm{i}', norm_layer) def init_weights(self): super(SwinTransformer, self).init_weights() if (isinstance(self.init_cfg, dict) and self.init_cfg['type'] == 'Pretrained'): # Suppress default init if use pretrained model. return if self.use_abs_pos_embed: trunc_normal_(self.absolute_pos_embed, std=0.02) def forward(self, x): x, hw_shape = self.patch_embed(x) if self.use_abs_pos_embed: x = x + resize_pos_embed( self.absolute_pos_embed, self.patch_resolution, hw_shape, self.interpolate_mode, self.num_extra_tokens) x = self.drop_after_pos(x) outs = [] for i, stage in enumerate(self.stages): x, hw_shape = stage(x, hw_shape) if i in self.out_indices: norm_layer = getattr(self, f'norm{i}') out = norm_layer(x) out = out.view(-1, *hw_shape, stage.out_channels).permute(0, 3, 1, 2).contiguous() outs.append(out) return tuple(outs) def _load_from_state_dict(self, state_dict, prefix, local_metadata, *args, **kwargs): """load checkpoints.""" # Names of some parameters in has been changed. version = local_metadata.get('version', None) if (version is None or version < 2) and self.__class__ is SwinTransformer: final_stage_num = len(self.stages) - 1 state_dict_keys = list(state_dict.keys()) for k in state_dict_keys: if k.startswith('norm.') or k.startswith('backbone.norm.'): convert_key = k.replace('norm.', f'norm{final_stage_num}.') state_dict[convert_key] = state_dict[k] del state_dict[k] if (version is None or version < 3) and self.__class__ is SwinTransformer: state_dict_keys = list(state_dict.keys()) for k in state_dict_keys: if 'attn_mask' in k: del state_dict[k] super()._load_from_state_dict(state_dict, prefix, local_metadata, *args, **kwargs) def _freeze_stages(self): if self.frozen_stages >= 0: self.patch_embed.eval() for param in self.patch_embed.parameters(): param.requires_grad = False for i in range(0, self.frozen_stages + 1): m = self.stages[i] m.eval() for param in m.parameters(): param.requires_grad = False for i in self.out_indices: if i <= self.frozen_stages: for param in getattr(self, f'norm{i}').parameters(): param.requires_grad = False def train(self, mode=True): super(SwinTransformer, self).train(mode) self._freeze_stages() if mode and self.norm_eval: for m in self.modules(): # trick: eval have effect on BatchNorm only if isinstance(m, _BatchNorm): m.eval() def _prepare_abs_pos_embed(self, state_dict, prefix, *args, **kwargs): name = prefix + 'absolute_pos_embed' if name not in state_dict.keys(): return ckpt_pos_embed_shape = state_dict[name].shape if self.absolute_pos_embed.shape != ckpt_pos_embed_shape: from mmcls.utils import get_root_logger logger = get_root_logger() logger.info( 'Resize the absolute_pos_embed shape from ' f'{ckpt_pos_embed_shape} to {self.absolute_pos_embed.shape}.') ckpt_pos_embed_shape = to_2tuple( int(np.sqrt(ckpt_pos_embed_shape[1] - self.num_extra_tokens))) pos_embed_shape = self.patch_embed.init_out_size state_dict[name] = resize_pos_embed(state_dict[name], ckpt_pos_embed_shape, pos_embed_shape, self.interpolate_mode, self.num_extra_tokens)
def test_patch_embed(): B = 2 H = 3 W = 4 C = 3 embed_dims = 10 kernel_size = 3 stride = 1 dummy_input = torch.rand(B, C, H, W) patch_merge_1 = PatchEmbed( in_channels=C, embed_dims=embed_dims, kernel_size=kernel_size, stride=stride, padding=0, dilation=1, norm_cfg=None) x1, shape = patch_merge_1(dummy_input) # test out shape assert x1.shape == (2, 2, 10) # test outsize is correct assert shape == (1, 2) # test L = out_h * out_w assert shape[0] * shape[1] == x1.shape[1] B = 2 H = 10 W = 10 C = 3 embed_dims = 10 kernel_size = 5 stride = 2 dummy_input = torch.rand(B, C, H, W) # test dilation patch_merge_2 = PatchEmbed( in_channels=C, embed_dims=embed_dims, kernel_size=kernel_size, stride=stride, padding=0, dilation=2, norm_cfg=None, ) x2, shape = patch_merge_2(dummy_input) # test out shape assert x2.shape == (2, 1, 10) # test outsize is correct assert shape == (1, 1) # test L = out_h * out_w assert shape[0] * shape[1] == x2.shape[1] stride = 2 input_size = (10, 10) dummy_input = torch.rand(B, C, H, W) # test stride and norm patch_merge_3 = PatchEmbed( in_channels=C, embed_dims=embed_dims, kernel_size=kernel_size, stride=stride, padding=0, dilation=2, norm_cfg=dict(type='LN'), input_size=input_size) x3, shape = patch_merge_3(dummy_input) # test out shape assert x3.shape == (2, 1, 10) # test outsize is correct assert shape == (1, 1) # test L = out_h * out_w assert shape[0] * shape[1] == x3.shape[1] # test the init_out_size with nn.Unfold assert patch_merge_3.init_out_size[1] == (input_size[0] - 2 * 4 - 1) // 2 + 1 assert patch_merge_3.init_out_size[0] == (input_size[0] - 2 * 4 - 1) // 2 + 1 H = 11 W = 12 input_size = (H, W) dummy_input = torch.rand(B, C, H, W) # test stride and norm patch_merge_3 = PatchEmbed( in_channels=C, embed_dims=embed_dims, kernel_size=kernel_size, stride=stride, padding=0, dilation=2, norm_cfg=dict(type='LN'), input_size=input_size) _, shape = patch_merge_3(dummy_input) # when input_size equal to real input # the out_size should be equal to `init_out_size` assert shape == patch_merge_3.init_out_size input_size = (H, W) dummy_input = torch.rand(B, C, H, W) # test stride and norm patch_merge_3 = PatchEmbed( in_channels=C, embed_dims=embed_dims, kernel_size=kernel_size, stride=stride, padding=0, dilation=2, norm_cfg=dict(type='LN'), input_size=input_size) _, shape = patch_merge_3(dummy_input) # when input_size equal to real input # the out_size should be equal to `init_out_size` assert shape == patch_merge_3.init_out_size # test adap padding for padding in ('same', 'corner'): in_c = 2 embed_dims = 3 B = 2 # test stride is 1 input_size = (5, 5) kernel_size = (5, 5) stride = (1, 1) dilation = 1 bias = False x = torch.rand(B, in_c, *input_size) patch_embed = PatchEmbed( in_channels=in_c, embed_dims=embed_dims, kernel_size=kernel_size, stride=stride, padding=padding, dilation=dilation, bias=bias) x_out, out_size = patch_embed(x) assert x_out.size() == (B, 25, 3) assert out_size == (5, 5) assert x_out.size(1) == out_size[0] * out_size[1] # test kernel_size == stride input_size = (5, 5) kernel_size = (5, 5) stride = (5, 5) dilation = 1 bias = False x = torch.rand(B, in_c, *input_size) patch_embed = PatchEmbed( in_channels=in_c, embed_dims=embed_dims, kernel_size=kernel_size, stride=stride, padding=padding, dilation=dilation, bias=bias) x_out, out_size = patch_embed(x) assert x_out.size() == (B, 1, 3) assert out_size == (1, 1) assert x_out.size(1) == out_size[0] * out_size[1] # test kernel_size == stride input_size = (6, 5) kernel_size = (5, 5) stride = (5, 5) dilation = 1 bias = False x = torch.rand(B, in_c, *input_size) patch_embed = PatchEmbed( in_channels=in_c, embed_dims=embed_dims, kernel_size=kernel_size, stride=stride, padding=padding, dilation=dilation, bias=bias) x_out, out_size = patch_embed(x) assert x_out.size() == (B, 2, 3) assert out_size == (2, 1) assert x_out.size(1) == out_size[0] * out_size[1] # test different kernel_size with different stride input_size = (6, 5) kernel_size = (6, 2) stride = (6, 2) dilation = 1 bias = False x = torch.rand(B, in_c, *input_size) patch_embed = PatchEmbed( in_channels=in_c, embed_dims=embed_dims, kernel_size=kernel_size, stride=stride, padding=padding, dilation=dilation, bias=bias) x_out, out_size = patch_embed(x) assert x_out.size() == (B, 3, 3) assert out_size == (1, 3) assert x_out.size(1) == out_size[0] * out_size[1]
def __init__(self, arch='base', img_size=224, patch_size=16, in_channels=3, out_indices=-1, drop_rate=0., drop_path_rate=0., qkv_bias=True, norm_cfg=dict(type='LN', eps=1e-6), final_norm=True, with_cls_token=True, output_cls_token=True, interpolate_mode='bicubic', patch_cfg=dict(), layer_cfgs=dict(), init_cfg=None): super(VisionTransformer, self).__init__(init_cfg) if isinstance(arch, str): arch = arch.lower() assert arch in set(self.arch_zoo), \ f'Arch {arch} is not in default archs {set(self.arch_zoo)}' self.arch_settings = self.arch_zoo[arch] else: essential_keys = { 'embed_dims', 'num_layers', 'num_heads', 'feedforward_channels' } assert isinstance(arch, dict) and essential_keys <= set(arch), \ f'Custom arch needs a dict with keys {essential_keys}' self.arch_settings = arch self.embed_dims = self.arch_settings['embed_dims'] self.num_layers = self.arch_settings['num_layers'] self.img_size = to_2tuple(img_size) # Set patch embedding _patch_cfg = dict( in_channels=in_channels, input_size=img_size, embed_dims=self.embed_dims, conv_type='Conv2d', kernel_size=patch_size, stride=patch_size, ) _patch_cfg.update(patch_cfg) self.patch_embed = PatchEmbed(**_patch_cfg) self.patch_resolution = self.patch_embed.init_out_size num_patches = self.patch_resolution[0] * self.patch_resolution[1] # Set cls token if output_cls_token: assert with_cls_token is True, f'with_cls_token must be True if' \ f'set output_cls_token to True, but got {with_cls_token}' self.with_cls_token = with_cls_token self.output_cls_token = output_cls_token self.cls_token = nn.Parameter(torch.zeros(1, 1, self.embed_dims)) # Set position embedding self.interpolate_mode = interpolate_mode self.pos_embed = nn.Parameter( torch.zeros(1, num_patches + self.num_extra_tokens, self.embed_dims)) self._register_load_state_dict_pre_hook(self._prepare_pos_embed) self.drop_after_pos = nn.Dropout(p=drop_rate) if isinstance(out_indices, int): out_indices = [out_indices] assert isinstance(out_indices, Sequence), \ f'"out_indices" must by a sequence or int, ' \ f'get {type(out_indices)} instead.' for i, index in enumerate(out_indices): if index < 0: out_indices[i] = self.num_layers + index assert 0 <= out_indices[i] <= self.num_layers, \ f'Invalid out_indices {index}' self.out_indices = out_indices # stochastic depth decay rule dpr = np.linspace(0, drop_path_rate, self.num_layers) self.layers = ModuleList() if isinstance(layer_cfgs, dict): layer_cfgs = [layer_cfgs] * self.num_layers for i in range(self.num_layers): _layer_cfg = dict(embed_dims=self.embed_dims, num_heads=self.arch_settings['num_heads'], feedforward_channels=self. arch_settings['feedforward_channels'], drop_rate=drop_rate, drop_path_rate=dpr[i], qkv_bias=qkv_bias, norm_cfg=norm_cfg) _layer_cfg.update(layer_cfgs[i]) self.layers.append(TransformerEncoderLayer(**_layer_cfg)) self.final_norm = final_norm if final_norm: self.norm1_name, norm1 = build_norm_layer(norm_cfg, self.embed_dims, postfix=1) self.add_module(self.norm1_name, norm1)
def __init__(self, arch, in_channels=3, out_indices=(3, ), qkv_bias=False, drop_rate=0., attn_drop_rate=0., drop_path_rate=0., norm_cfg=dict(type='LN'), norm_after_stage=False, init_cfg=None): super(PCPVT, self).__init__(init_cfg=init_cfg) if isinstance(arch, str): arch = arch.lower() assert arch in set(self.arch_zoo), \ f'Arch {arch} is not in default archs {set(self.arch_zoo)}' self.arch_settings = self.arch_zoo[arch] else: assert isinstance(arch, dict) and ( set(arch) == self.essential_keys ), f'Custom arch needs a dict with keys {self.essential_keys}.' self.arch_settings = arch self.depths = self.arch_settings['depths'] self.embed_dims = self.arch_settings['embed_dims'] self.patch_sizes = self.arch_settings['patch_sizes'] self.strides = self.arch_settings['strides'] self.mlp_ratios = self.arch_settings['mlp_ratios'] self.num_heads = self.arch_settings['num_heads'] self.sr_ratios = self.arch_settings['sr_ratios'] self.num_extra_tokens = 0 # there is no cls-token in Twins self.num_stage = len(self.depths) for key, value in self.arch_settings.items(): assert isinstance(value, list) and len(value) == self.num_stage, ( 'Length of setting item in arch dict must be type of list and' ' have the same length.') # patch_embeds self.patch_embeds = ModuleList() self.position_encoding_drops = ModuleList() self.stages = ModuleList() for i in range(self.num_stage): # use in_channels of the model in the first stage if i == 0: stage_in_channels = in_channels else: stage_in_channels = self.embed_dims[i - 1] self.patch_embeds.append( PatchEmbed(in_channels=stage_in_channels, embed_dims=self.embed_dims[i], conv_type='Conv2d', kernel_size=self.patch_sizes[i], stride=self.strides[i], padding='corner', norm_cfg=dict(type='LN'))) self.position_encoding_drops.append(nn.Dropout(p=drop_rate)) # PEGs self.position_encodings = ModuleList([ ConditionalPositionEncoding(embed_dim, embed_dim) for embed_dim in self.embed_dims ]) # stochastic depth total_depth = sum(self.depths) self.dpr = [ x.item() for x in torch.linspace(0, drop_path_rate, total_depth) ] # stochastic depth decay rule cur = 0 for k in range(len(self.depths)): _block = ModuleList([ GSAEncoderLayer(embed_dims=self.embed_dims[k], num_heads=self.num_heads[k], feedforward_channels=self.mlp_ratios[k] * self.embed_dims[k], attn_drop_rate=attn_drop_rate, drop_rate=drop_rate, drop_path_rate=self.dpr[cur + i], num_fcs=2, qkv_bias=qkv_bias, act_cfg=dict(type='GELU'), norm_cfg=norm_cfg, sr_ratio=self.sr_ratios[k]) for i in range(self.depths[k]) ]) self.stages.append(_block) cur += self.depths[k] self.out_indices = out_indices assert isinstance(norm_after_stage, (bool, list)) if isinstance(norm_after_stage, bool): self.norm_after_stage = [norm_after_stage] * self.num_stage else: self.norm_after_stage = norm_after_stage assert len(self.norm_after_stage) == self.num_stage, \ (f'Number of norm_after_stage({len(self.norm_after_stage)}) should' f' be equal to the number of stages({self.num_stage}).') for i, has_norm in enumerate(self.norm_after_stage): assert isinstance(has_norm, bool), 'norm_after_stage should be ' \ 'bool or List[bool].' if has_norm and norm_cfg is not None: norm_layer = build_norm_layer(norm_cfg, self.embed_dims[i])[1] else: norm_layer = nn.Identity() self.add_module(f'norm_after_stage{i}', norm_layer)
def __init__(self, arch='base', img_size=224, patch_size=16, out_indices=-1, drop_rate=0., drop_path_rate=0., norm_cfg=dict(type='LN'), act_cfg=dict(type='GELU'), patch_cfg=dict(), layer_cfgs=dict(), init_cfg=None): super(MlpMixer, self).__init__(init_cfg) if isinstance(arch, str): arch = arch.lower() assert arch in set(self.arch_zoo), \ f'Arch {arch} is not in default archs {set(self.arch_zoo)}' self.arch_settings = self.arch_zoo[arch] else: essential_keys = { 'embed_dims', 'num_layers', 'tokens_mlp_dims', 'channels_mlp_dims' } assert isinstance(arch, dict) and set(arch) == essential_keys, \ f'Custom arch needs a dict with keys {essential_keys}' self.arch_settings = arch self.embed_dims = self.arch_settings['embed_dims'] self.num_layers = self.arch_settings['num_layers'] self.tokens_mlp_dims = self.arch_settings['tokens_mlp_dims'] self.channels_mlp_dims = self.arch_settings['channels_mlp_dims'] self.img_size = to_2tuple(img_size) _patch_cfg = dict( input_size=img_size, embed_dims=self.embed_dims, conv_type='Conv2d', kernel_size=patch_size, stride=patch_size, ) _patch_cfg.update(patch_cfg) self.patch_embed = PatchEmbed(**_patch_cfg) self.patch_resolution = self.patch_embed.init_out_size num_patches = self.patch_resolution[0] * self.patch_resolution[1] if isinstance(out_indices, int): out_indices = [out_indices] assert isinstance(out_indices, Sequence), \ f'"out_indices" must be a sequence or int, ' \ f'get {type(out_indices)} instead.' for i, index in enumerate(out_indices): if index < 0: out_indices[i] = self.num_layers + index assert out_indices[i] >= 0, f'Invalid out_indices {index}' else: assert index >= self.num_layers, f'Invalid out_indices {index}' self.out_indices = out_indices self.layers = ModuleList() if isinstance(layer_cfgs, dict): layer_cfgs = [layer_cfgs] * self.num_layers for i in range(self.num_layers): _layer_cfg = dict( num_tokens=num_patches, embed_dims=self.embed_dims, tokens_mlp_dims=self.tokens_mlp_dims, channels_mlp_dims=self.channels_mlp_dims, drop_rate=drop_rate, drop_path_rate=drop_path_rate, act_cfg=act_cfg, norm_cfg=norm_cfg, ) _layer_cfg.update(layer_cfgs[i]) self.layers.append(MixerBlock(**_layer_cfg)) self.norm1_name, norm1 = build_norm_layer(norm_cfg, self.embed_dims, postfix=1) self.add_module(self.norm1_name, norm1)