コード例 #1
0
def linear_sampler(data, offset):
    """Differentiable Temporal-wise Frame Sampling, which is essentially a
    linear interpolation process.

    It gets the feature map which has been split into several groups
    and shift them by different offsets according to their groups.
    Then compute the weighted sum along with the temporal dimension.

    Args:
        data (torch.Tensor): Split data for certain group in shape
            [N, num_segments, C, H, W].
        offset (torch.Tensor): Data offsets for this group data in shape
            [N, num_segments].
    """
    # [N, num_segments, C, H, W]
    n, t, c, h, w = data.shape

    # offset0, offset1: [N, num_segments]
    offset0 = torch.floor(offset).int()
    offset1 = offset0 + 1

    # data, data0, data1: [N, num_segments, C, H * W]
    data = data.view(n, t, c, h * w).contiguous()

    try:
        from mmcv.ops import tin_shift
    except (ImportError, ModuleNotFoundError):
        raise ImportError('Failed to import `tin_shift` from `mmcv.ops`. You '
                          'will be unable to use TIN. ')

    data0 = tin_shift(data, offset0)
    data1 = tin_shift(data, offset1)

    # weight0, weight1: [N, num_segments]
    weight0 = 1 - (offset - offset0.float())
    weight1 = 1 - weight0

    # weight0, weight1:
    # [N, num_segments] -> [N, num_segments, C // num_segments] -> [N, C]
    group_size = offset.shape[1]
    weight0 = weight0[:, :, None].repeat(1, 1, c // group_size)
    weight0 = weight0.view(weight0.size(0), -1)
    weight1 = weight1[:, :, None].repeat(1, 1, c // group_size)
    weight1 = weight1.view(weight1.size(0), -1)

    # weight0, weight1: [N, C] -> [N, 1, C, 1]
    weight0 = weight0[:, None, :, None]
    weight1 = weight1[:, None, :, None]

    # output: [N, num_segments, C, H * W] -> [N, num_segments, C, H, W]
    output = weight0 * data0 + weight1 * data1
    output = output.view(n, t, c, h, w)

    return output
コード例 #2
0
ファイル: test_tin_shift.py プロジェクト: www516717402/mmcv
def _test_tinshift_assert(dtype):
    try:
        from mmcv.ops import tin_shift
    except ModuleNotFoundError:
        pytest.skip('TINShift op is not successfully compiled')

    inputs = [torch.rand(2, 3, 4, 2), torch.rand(2, 3, 4, 2)]
    shifts = [torch.rand(2, 3), torch.rand(2, 5)]

    for x, shift in zip(inputs, shifts):
        x = x.cuda()
        shift = shift.cuda()

        # A ValueError should be raised if ops get inputs with wrong shapes.
        with pytest.raises(ValueError):
            tin_shift(x, shift)
コード例 #3
0
ファイル: test_tin_shift.py プロジェクト: www516717402/mmcv
def _test_tinshift_allclose(dtype):
    try:
        from mmcv.ops import tin_shift
    except ModuleNotFoundError:
        pytest.skip('TINShift op is not successfully compiled')

    for shift, output, grad in zip(shifts, outputs, grads):
        np_input = np.array(inputs)
        np_shift = np.array(shift)
        np_output = np.array(output)
        np_grad = np.array(grad)

        x = torch.tensor(np_input,
                         dtype=dtype,
                         device='cuda',
                         requires_grad=True)
        shift = torch.tensor(np_shift, device='cuda').int()

        output = tin_shift(x, shift)
        output.backward(torch.ones_like(output))
        assert np.allclose(
            output.data.type(torch.float).cpu().numpy(), np_output, 1e-3)
        assert np.allclose(
            x.grad.data.type(torch.float).cpu().numpy(), np_grad, 1e-3)