def test_collect_env(): try: import torch # noqa: F401 except ModuleNotFoundError: pytest.skip('skipping tests that require PyTorch') from mmcv.utils import collect_env env_info = collect_env() expected_keys = [ 'sys.platform', 'Python', 'CUDA available', 'PyTorch', 'PyTorch compiling details', 'OpenCV', 'MMCV', 'MMCV Compiler', 'MMCV CUDA Compiler' ] for key in expected_keys: assert key in env_info if env_info['CUDA available']: for key in ['CUDA_HOME', 'NVCC']: assert key in env_info if sys.platform != 'win32': assert 'GCC' in env_info assert env_info['sys.platform'] == sys.platform assert env_info['Python'] == sys.version.replace('\n', '') assert env_info['MMCV'] == mmcv.__version__
[[1.0, 1.0, 3.0, 4.0, 0.5], [2.0, 2.0, 3.0, 4.0, 0.6], [7.0, 7.0, 8.0, 8.0, 0.4]], dtype=np.float32) np_boxes2 = np.asarray( [[0.0, 2.0, 2.0, 5.0, 0.3], [2.0, 1.0, 3.0, 3.0, 0.5], [5.0, 5.0, 6.0, 7.0, 0.4]], dtype=np.float32) boxes1 = torch.from_numpy(np_boxes1) boxes2 = torch.from_numpy(np_boxes2) # test mmcv-full with CPU ops box_iou_rotated(boxes1, boxes2) # test mmcv-full with both CPU and CUDA ops if torch.cuda.is_available(): boxes1 = boxes1.cuda() boxes2 = boxes2.cuda() box_iou_rotated(boxes1, boxes2) if __name__ == '__main__': print('Start checking the installation of mmcv-full ...') check_installation() print('mmcv-full has been installed successfully.\n') env_info_dict = collect_env() env_info = '\n'.join([(f'{k}: {v}') for k, v in env_info_dict.items()]) dash_line = '-' * 60 + '\n' print('Environment info:\n' + dash_line + env_info + '\n' + dash_line)
def main(): args = parse_args() cfg = Config.fromfile(args.config) if args.cfg_options is not None: cfg.merge_from_dict(args.cfg_options) # set cudnn_benchmark if cfg.get('cudnn_benchmark', False): torch.backends.cudnn.benchmark = True # work_dir is determined in this priority: CLI > segment in file > filename if args.work_dir is not None: # update configs according to CLI args if args.work_dir is not None cfg.work_dir = args.work_dir elif cfg.get('work_dir', None) is None: # use config filename as default work_dir if cfg.work_dir is None cfg.work_dir = osp.join('./work_dirs', osp.splitext(osp.basename(args.config))[0]) if args.resume_from is not None: cfg.resume_from = args.resume_from if args.gpu_ids is not None: cfg.gpu_ids = args.gpu_ids else: cfg.gpu_ids = range(1) if args.gpus is None else range(args.gpus) # init distributed env first, since logger depends on the dist info. if args.launcher == 'none': distributed = False else: distributed = True init_dist(args.launcher, **cfg.dist_params) # re-set gpu_ids with distributed training mode _, world_size = get_dist_info() cfg.gpu_ids = range(world_size) # create work_dir mmcv.mkdir_or_exist(osp.abspath(cfg.work_dir)) # dump config cfg.dump(osp.join(cfg.work_dir, osp.basename(args.config))) # init the logger before other steps timestamp = time.strftime('%Y%m%d_%H%M%S', time.localtime()) log_file = osp.join(cfg.work_dir, f'{timestamp}.log') logger = get_root_logger(log_file=log_file, log_level=cfg.log_level) # init the meta dict to record some important information such as # environment info and seed, which will be logged meta = dict() # log env info env_info_dict = collect_env() env_info = '\n'.join([(f'{k}: {v}') for k, v in env_info_dict.items()]) dash_line = '-' * 60 + '\n' logger.info('Environment info:\n' + dash_line + env_info + '\n' + dash_line) meta['env_info'] = env_info meta['config'] = cfg.text # log some basic info logger.info(f'Distributed training: {distributed}') logger.info(f'Config:\n{cfg.text}') # set random seeds if args.seed is not None: logger.info(f'Set random seed to {args.seed}, ' f'deterministic: {args.deterministic}') set_random_seed(args.seed, deterministic=args.deterministic) cfg.seed = args.seed meta['seed'] = args.seed meta['exp_name'] = osp.basename(args.config) model = build_reid(cfg.model) datasets = [build_dataset(cfg.data.train)] if cfg.checkpoint_config is not None: # save project version in checkpoints as meta cfg.checkpoint_config.meta = dict(reid_version=__version__) train_reid(model, datasets, cfg, distributed=distributed, validate=(not args.no_validate), timestamp=timestamp, meta=meta)